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Abstract

In this paper, we consider two components system which lifetimes have
Freund’s bivariate exponential model with equal failure rates. We propose
Bayesian multiple comparisons procedure  for the failure rates of 1
Freund’s bivariate exponential populations based on Dirichlet process
priors(DPP). The family of DPP is applied in the form of baseline prior
and likelihood combination to provide the comparisons. Computation of the
posterior probabilities of all possible hypotheses are carried out through
Markov Chain Monte Carlo(MCMC) method, namely, Gibhs sampling, due
to the intractability of analytic evaluation. The whole process of multiple
comparisons problem for the failure rates of bivariate exponential
populations is illustrated through a numerical example.

Keywords : Bivariate Exponential Population, Dirichlet Process Prior,
Gibbs Sampler; Mixture of Dirichlet Processes, Multiple Comparison;
Nonparametric Bayes

1. Introduction

In reliability studies of mechanical components, dependence between two
components occurs quite often. A system, which functions as long as at least one
of the two identical components functions, has a functional correlation between the
system components. This dependence among components arises from common
environmental stresses and shocks. Freund(1961) formulated a bivariate extension
of the exponential model as a model for a system where the lifetimes of the two
components may depend on each other. For this model, many researches are
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studied by authors. Minimum variance unbiased estimator for the system reliability
was obtained by Kunchur and Munoli(1994). A estimator of system reliability from
stress—strength relationship was derived by Hanagal(1996). Also statistical
hypothesis testing procedures for independence and symmetry from a frequentist
viewpoint were proposed by Hanagal and Kale(1992). A probability matching priors
in Freund’s hivariate exponential model was derived by Cho and Baek(2002).

On the other side, the multiple comparison problem(MCP) for 7 Freund’s
bivariate exponential populations with equal failure rates 6= (6y,---.0;) can be
viewed as making inferences concerning relationships among the 68’s based on
observations. This is tantamount to testing the following hypothesis,

H :0,=-=0; vs. H :not H,

For Freund's bivariate exponential populations, the frequentist approach is not
very straightforward. This is partly due to the difficulty in handling the
distributional aspects and associated computations. The multiple comparison
problem using nonparametric priors in a Bayesian inferential setup was studied
by Gopalan and Berry (1998).

In this paper, we propose a Bayesian multiple comparisons procedure based on
DPP for the failure rates in I Freund’s bivariate exponential populations. The
MCMC techniques, in particular, Gibbs sampling is adopted here to evaluate the
posterior probabilities of the hypotheses. Reviews on the DPP are presented in
Section 2, while Section 3 presents the calculation of posterior probabilities for the
hypotheses in MCP. A numerical example illustrating the procedure is presented in
Section 4.

2. Preliminaries

Let (X,Y) be random variables of Freund’'s bivariate exponential model with
parameters (6,6,(,¢ ). Then the joint probability density function is given as

o d oy [aCexpl—Cy—(6+c=x). y>a>o0,
f(IaU 6767C7C)_ {6’Cexp[_6’x_(6+c_6’)y]’ I>’l/>0 (1>

In this paper, we assume 6=C(=0), § =((=n) so that the lifetimes of two
components are equal failure rates. We assume that (g, y)z (z1, ), (zpy,) be a

set of observations available on 7 populations, where (;%:)= (z;1,y;1), (@, ,y5,)
is an m;X1 vector of conditionally independent observations on population

I
Z’? izl?”'al; jzl,"',ni al’ld Eni:n.
=1
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Now a distribution function G,(- ) and a positive scalar precision parameter o
together determine the DPP G. Here G,( - ) that defines the location of the DPP,
1s sometimes called prior "guess” or baseline prior. The precision parameter a
determines the concentration of the prior for G around the prior guess G,, and
therefore measures the strength of belief in &,. The DPP is usually denoted by
G~ DG Gya).

We assume that the 6,’s come from G, and that G~ D(G| G,.a) as stated
above. This structure results in a posterior distribution which is a mixture of
Dirichlet processes (Antoniak, 1974). Now following the Polya urn representation of
the Dirichlet process (Blackwell and MacQueen, 1973), the joint posterior
distribution can be written as,

a0+ Y3600, 16,)

7
k<1
0,1 Qaﬂocgf(xiayi | Qi)>< ati—1 (2)

where 6(0,16,) is the distribution putting a point mass on #,. For each
i =1,---,1, the conditional posterior distribution of 6; is given by,

0,1 0,k=1i,x,ycc qu'b(Hi | Iia.%')"' Eqktswi | Hk), 3)
k=i
where G0, | z,,y;) is the baseline posterior distribution,
qoocoz‘/f(a:i,yi | Qi)dGo(Qi), koCf(:Ei,yi | gk), and 1=g¢q,+ quv
k=i

Let ©={0=(0,,---,0;) : 0,€R,i=1,---,1} be the I-dimensional parameter space.
Equality and inequality relationships among #'s induce statistical hypotheses that
are subsets of @. Thus the MCP becomes testing the following hypotheses.

Ho:eo:{gi:gl =0,=-=0,}, H 391:{9i391 =0y =0y == 0}, -,
Hy:0y=1{0,:0, = 0,0, 4)

The hypotheses M, :0,,7=0,1,2,--,N are disjoint, and U/-,0,=6O. The
elements of © themselves behave as described by (4) and so with positive
probability, they will reduce to some p<[7 distinct values. Let superscript *
denotes distinct values of the parameters. Then any realization of 7/ parameters 6,

generated from G lies in a set of p < I distinct values, denoted by 0" = (91‘,---,9;).
The computation of posterior probabilities for different hypotheses through Gibbs

algorithm becomes manageable using the notion of Configuration as termed by
Gopalan and Berry(1993). Their definition of Configuration is restated here,
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Definition(Configuration): The set of indices S={5,---,9;} determines a
classification of the data ©=(6,,---.6;) into I distinct groups or clusters; the
n, =#{S; =1} observations in group | share the common parameter value 9;. Now,
define [z* as the set of indices of observations in group 1. That is, IZ*Z {i:8=1}.
Let (X,Y);, ={(X,Y;):S =1} be the corresponding group of = N in,

er

observations.

Thus a one-to-one correspondence between hypotheses and configurations
follows. And the required computations are reduced by the fact that the distinct 6,

's are typically reduced to fewer than I due to the clustering of the 6,’s inherent
in the Dirichlet process. Hence, (3) can be rewritten as:

0; 1 Opk = i 2,y 0 4, Gy (0 | Iwyi)_"_znqué(gi 1 6,), )

i#= k

with qzoc flz;y; | 92), and 1=g¢,+ E_nqu. In addition to the simplification of

k=1
notations, the cluster structure of the 6; also improves the efficiency of the

algorithm.
3. Posterior Sampling In Dirichlet Process Mixtures

A gamma distribution with parameters (a,;3,;) is considered as baseline prior
G,. This implies that 6,,---,6; are iid. from G,. Then a hierarchical set up for
the Dirichlet process analysis as outlined above becomes,

z;y; | 0,m; ~ BVE(x,y; | 1,0,), 6)
0,1 G~ G(0,), (7

Gl G.,a~ DG G,a), (8)

G, | @y By ~ Gam(a,;,8,,), 9
i | ey By~ Gam(ay, ;). (10)

Here, BVE and Gam stand for Freund’'s bivariate exponential and gamma
distributions, respectively. Also we consider a gamma prior for o with a shape
parameter ¢ and scale parameter b, that is, a ~ Gaml(a,b). Thus the Gam(a,b)
becomes the reference prior if ae—0 and b—0. And we have access to a neat data
augmentation device for sampling a by Escobar and West(1995).

The configuration notation is more convenient to use in describing the Gibbs
sampling algorithm as the full conditionals can be written in closed form as under:
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n; +am,2( E xij+ E Yi;

0.1 z,y,0,,k = i,a ~ q,Gam

+5m)+ Sqsdo;16,), (11)

W JE D, nJE D, =14
m | @,y050 ~ Gam|n+oy, Y, (y;;— w5)+ > (xij_yij)+61i); (12)
“iE D, “JE D,
0, | z,y,8~ Gam En +a,, 22( P2 + E yw)—i—ﬁoj), (13)
1€[l i€ L\6JED,
al C,I* ~ WCGam(oz—i—I*, b—log(C))—i—(l—wC)G’am(a—i—l*— 1, b—log(()), (14)
¢ a,l ~ Beta(oz—!—l,[*), (15)

where D1 = {(Iij7yij) | Ly < Yijo i=1,-,Lj5= 17"'77%'},
Dy = {(Iijvyij) | Tii > Yip i=1,- L= 17"'77%};

ﬁj;i % I'n,+a,;)
qo =« F( ) + o,
Qy; ah E x, _|_ E %) oi
»jE D, »JE Dy
F(ni—i—oz”)
< n,+ oy
[ >, (g — x45) + > (Iij_yij)_'—ﬁli] o
i€ D, 0§ D,

and

4 9?77?6@(— nk( E (yij_xij)_ E (%‘j_ Uu)))
i€ D, 0 jE D,

. exp(— 29,{12 ixij—i— Y] i]yjjj

iE D=1 €Dy =1

Gibbs sampling proceeds by simply iterating through (11) - (15) in order,
sampling at each stage based on the current values of all the conditioning
variables.

The configuration induces the equality and inequality relationships among the 6
’s, that corresponds to the partitions on the parameter space © and in turn to the
hypotheses of interest. In order to estimate the posterior probability of a
hypothesis A, from a large number (L) of sample draws, we take

z
P(H. | z,y) Z , (16)

where § sl(Hr) denotes unit point mass for the case where Ith draw of S, S

corresponds to H..
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4. A Numerical Example

A numerical example of the multiple comparisons for the failure rates in
Freund’s bivariate exponential populations is presented in this section using
simulated data. We consider 4 bivariate exponential populations each with size
n; =10, i=1,---,4 and (2.0,2.5) for (6;,m;) and (05.m5), (3.0,3.5) for (0373) and
(0,,m,), respectively. Then the numbers of possible hypotheses for multiple
comparisons are 15, And we note that the true hypothesis may be
Hy 0, =0,=0,=10, The simulated data are given as follows.

Table 1 The simulated data for each populations

populations simulated data
(0.1720, 0.3284), (0.1735, 0.2636), (3.0748, 0.8220), (0.1875, 0.8710),
1 (1.0869, 0.5975), (0.6868, 0.7684), (0.6802, 0.5826), (0.6041, 0.5079),

(0.7245, 1.6152
(0.6259, 0.3833

2 (0.0794, 0.2518), (0.2511, 0.0414), (0.4345, 0.7155), (1.8190, 1.3002),

)
) )
) )
) )
) )
(0.2433, 0.1433), (0.9515, 0.9345)
(0.2415, 0.1285), (0.1644, 0.4834), (0.2619, 1.3812), (0.1134, 0.5902),
) )
) )
) )
) )
) )

, (0.0135, 0.7087
, (0.1061, 0.3369), (0.1098, 0.5392), (0.4286, 0.2595),

3 (0.0161, 0.2061), (0.3743, 0.0263), (0.1445, 0.1614), (0.1757, 0.1729),

(0.6590, 0.0129), (0.9584, 0.3516
(0.0108, 0.1512), (0.3300, 0.1720), (0.4603, 0.0485), (0.5986, 0.4157),

4 (0.1134, 0.0358), (0.7188, 0.2094), (0.6368, 0.7092), (0.0462, 0.4763),
(0.1965, 0.0376), (0.0757, 0.3016

For the precision parameter «, we consider Gamma priors with parameters (a,b)
= (0.01, 0.01) in order to have equal mean 1 and variance 100 that the prior he
fairly noninformative. We also set a priori that each 6,4 =1,---.4 follows a gamma
distribution with parameters «,=a;;=2 and B,=0,;=0.001 to reflect
vagueness of the prior knowledge.

The posterior probabilities for all possible hypotheses are approximated by the
Gibbs  sampling algorithm using 20,000 iterations with 10,000 burn out and 5
replications and are presented in Table 2.
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Table 2 Calculated posterior probabilities for each hypothesis
H, P, | z.y) H, PH, | z.y) H, PH, | z.y)
0;=0,=0;=06, | 00139 | 6,=0;=0,=0, | 00083 |6 =0,=0,=06,] 0.0492
0y =0,=0,=06, | 00252 |0, =0,=0,=0, 00072 |0;,=0,=0,=6, 0.0350
0y =0,=0,=0, | 00331 |6 =0,=0,»0, 00113 |0, =60,=0,=60;| 0.0467
0y =0,=0,=0, | 03531 |0, =0,=0,=0, 00067 |0,=0,=0;,=0, 01745
0y=0,=0,70, | 01483 |0, =0,=0,=06;| 00141 |6, =0,#6;=6,| 00733

It is to be noted that the hypotheses 6, =0,=0;=0,, 6,#0,=6,=0, and
6,=0,#0,=0, have the large posterior probabilities 0.3531, 0.1745 and 0.1483,
respectively. Thus the data lend greatest support to equalities for 6, =0, and
0, =0, being different from the others.

The Bayesian approach using nonparametric Dirichlet process priors facilitates
studying the problem of multiple comparisons in a number of different
distributions. So far, the MCP was carried out for a bivariate distribution. The
method can be extended to a multivariate distribution as well, with moderate
effort.
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