• 제목/요약/키워드: Bayesian Information Criterion

검색결과 121건 처리시간 0.023초

소프트웨어 신뢰모형에 대한 베이지안 접근 (Bayesian Approach for Software Reliability Models)

  • 최기헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.119-133
    • /
    • 1999
  • 마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.

  • PDF

영상 복원을 위한 통합 베이즈 티코노프 정규화 방법 (A Unified Bayesian Tikhonov Regularization Method for Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.1129-1134
    • /
    • 2016
  • 본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 티코노프 정규화에 대한 통합된 베이즈 해석을 소개하고 영상 복원 문제에 적용한다. 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 실험결과는 제안하는 방법의 효능을 보여준다.

Optimal Bayesian MCMC based fire brigade non-suppression probability model considering uncertainty of parameters

  • Kim, Sunghyun;Lee, Sungsu
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2941-2959
    • /
    • 2022
  • The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • 대한원격탐사학회지
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

베이즈 정보 기준을 활용한 분할-정복 벌점화 분위수 회귀 (Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression)

  • 강종경;한석원;방성완
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.217-227
    • /
    • 2022
  • 분위수 회귀 모형은 변수에 숨겨진 복잡한 정보를 살펴보기 위한 효율적인 도구를 제공하는 장점을 바탕으로 많은 분야에서 널리 사용되고 있다. 그러나 현대의 대용량-고차원 데이터는 계산 시간 및 저장공간의 제한으로 인해 분위수 회귀 모형의 추정을 매우 어렵게 만든다. 분할-정복은 전체 데이터를 계산이 용이한 여러개의 부분집합으로 나눈 다음 각 분할에서의 요약 통계량만을 이용하여 전체 데이터의 추정량을 재구성하는 기법이다. 본 연구에서는 분할-정복 기법을 벌점화 분위수 회귀에 적용하고 베이즈 정보기준을 활용하여 변수를 선택하는 방법에 관하여 연구하였다. 제안 방법은 분할 수를 적절하게 선택하였을 때, 전체 데이터로 계산한 일반적인 분위수 회귀 추정량만큼 변수 선택의 측면에서 일관된 결과를 제공하면서 계산 속도의 측면에서 효율적이다. 이러한 제안된 방법의 장점은 시뮬레이션 데이터 및 실제 데이터 분석을 통해 확인하였다.

주택가격이 센서스에 기반한 박탈지수의 대안이 될 수 있는가?: 다수준 모델에 기반한 평가 (Can Housing Prices Be an Alternative to a Census-based Deprivation Index? An Evaluation Based on Multilevel Modeling)

  • 손철;나카야 토모키
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.197-211
    • /
    • 2018
  • 본 연구에서는 건강에 대한 공간적 연구에서 통상적으로 사용되는 센서스에 기반한 지역 박탈지수의 대안으로 지역 주택가격이 사용될 수 있는지 평가하였다. 평가를 위해 개인을 1수준으로, 수도권의 보건소 구역을 2수준으로 하는 다수준 로지스틱 모델이 추정되었다. 다수준 모델에는 개인의 점심식사후 칫솔질과 치간실 사용을 설명하기 위한 개인수준의 변수들과 보건소 구역을 대표하는 사회적 박탈지수 및 지역주택가격 수준이 포함되었다. 추정된 모델들의 설명력은 Akaike Information Criterion (AIC)와 Bayesian Information Criterion (BIC)를 이용하여 평가되었다. 모델의 추정결과는 사회적 박탈지수 및 지역 주택가격이 모두 개인의 치아관리 행동을 설명하는 데 기여하나 지역 주택가격을 사용한 모델의 AIC 및 BIC가 통상적인 센서스 기반 지역 박탈지수를 사용한 경우 보다 낮은 것을 보여 주었다. 본 연구결과는 센서스에 기반한 박탈지수를 생성하는 데 사용된 센서스 변수가 시점의 차이 등의 이유로 적절하지 않을 경우 지역 주택가격이 지역의 사회경제적 수준을 대표하기 위해 대안적으로 사용될 수 있음을 보여준다.

Bayesian Analysis for the Difference of Exponential Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.135-144
    • /
    • 2005
  • In this paper, we develop the noninformative priors for the exponential models when the parameter of interest is the difference of two means. We develop the first and second order matching priors. We reveal that the second order matching priors do not exist. It turns out that Jeffreys' prior does not satisfy a first order matching criterion. The Bayesian credible intervals based on the first order matching meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior.

  • PDF

BAYESIAN TEST FOR THE EQUALITY OF THE MEANS AND VARIANCES OF THE TWO NORMAL POPULATIONS WITH VARIANCES RELATED TO THE MEANS USING NONINFORMATIVE PRIORS

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • 제32권3호
    • /
    • pp.271-288
    • /
    • 2003
  • In this paper, when the variance of the normal distribution is related to the mean, we develop noninformative priors such as matching priors and reference priors. We prove that the second order matching prior matches alternative coverage probabilities up to the same order and also it is a HPD matching prior. It turns out that one-at-a-time reference prior satisfies a second order matching criterion. Then using these noninformative priors, we develop a Bayesian test procedure for the equality of the means and variances of two independent normal distributions using fractional Bayes factor. Some simulation study is performed, and a real data example is also provided.

고장률 함수의 평활추정 (A Smooth Estimation of Failure Rate Function)

  • 나명환;이현우;김재주
    • 품질경영학회지
    • /
    • 제25권3호
    • /
    • pp.51-61
    • /
    • 1997
  • We introduce a method of estimating an unknown failure rate function based on sample data. We estimate failure rate function by a function s from a space of cubic splines constrained to be linear (or constant) in tails using maximum likelihood estimation. The number of knots are determined by Bayesian Information Criterion(BIC). Examples using simulated data are used to illustrate the performance of this method.

  • PDF

SPLINE HAZARD RATE ESTIMATION USING CENSORED DATA

  • Na, Myung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.99-106
    • /
    • 1999
  • In this paper, the spline hazard rate model to the randomly censored data is introduced. The unknown hazard rate function is expressed as a linear combination of B-splines which is constrained to be linear(or constant) in tails. We determine the coefficients of the linear combination by maximizing the likelihood function. The number of knots are determined by Bayesian Information Criterion. Examples using simulated data are used to illustrate the performance of this method under presenting the random censoring.

  • PDF