• Title/Summary/Keyword: Bayesian Classifier

Search Result 150, Processing Time 0.023 seconds

Evaluation of Future Hydrologic Risk of Drought in Nakdong River Basin Using Bayesian Classification-Based Composite Drought Index (베이지안 분류 기반 통합가뭄지수를 활용한 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도 분석)

  • Kim, Hyeok;Kim, Ji Eun;Kim, Jiyoung;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.309-319
    • /
    • 2023
  • Recently, the frequency and intensity of meteorological disasters have increased due to climate change. In South Korea, there are regional differences in vulnerability and response capability to cope with climate change because of regional climate characteristics. In particular, drought results from various factors and is linked to extensive meteorological, hydrological, and agricultural impacts. Therefore, in order to effectively cope with drought, it is necessary to use a composite drought index that can take into account various factors, and to evaluate future droughts comprehensively considering climate change. This study evaluated hydrologic risk(${\bar{R}}$) of future drought in the Nakdong River basin based on the Dynamic Naive Bayesian Classification (DNBC)-based composite drought index, which was calculated by applying Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), Evaporate Stress Index (ESI) and Water Supply Capacity Index (WSCI) to the DNBC. The indices used in the DNBC were calculated using observation data and climate scenario data. A bivariate frequency analysis was performed for the severity and duration of the composite drought. Then using the estimated bivariate return periods, hydrologic risks of drought were calculated for observation and future periods. The overall results indicated that there were the highest risks during the future period (2021-2040) (${\bar{R}}$=0.572), and Miryang River (#2021) had the highest risk (${\bar{R}}$=0.940) on average. The hydrologic risk of the Nakdong River basin will increase highly in the near future (2021-2040). During the far future (2041-2099), the hydrologic risk decreased in the northern basins, and increased in the southern basins.

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.

Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers (균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가)

  • Go, Hyoun-Ju;Woo, Na-Young;Shin, Yong-Nyuo;Kim, Jae-Sung;Kim, Hak-Il;Chun, Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.4
    • /
    • pp.377-388
    • /
    • 2007
  • In this paper, we propose a multi-modal biometric system based on face, iris and fingerprint recognition system. To effectively aggregate two systems, we use statistical distribution models based on matching values for genuine and impostor, respectively. And then, We performed reveal fusion algorithms including weighted summation, Support Vector Machine(SVM), Fisher discriminant analysis, Bayesian classifier. From the various experiments, we found that the performance of multi-modal biometric system was influenced with the normalization methods and classifiers.

Comparison of Performance for Korean E-mail Filtering using Bayesian Classifier (한글 전자메일에 대한 베이지언 필터의 성능비교)

  • Lee, Chang-Beom;Kim, Ji-Soo;Kim, Soo-Hyung;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.214-219
    • /
    • 2004
  • 전자 메일은 매우 많은 사람들이 사용하는 편리하고 효율적인 통신 수단이다. 그러나 전자메일 주소를 쉽게 획득할 수 있다면 점을 악용하기 때문에 사용자가 원하지 않는 메일 즉 스팸 메일에 대한 문제가 심각해지고 있다. 이러한 스팸 메일을 자동으로 분류해주는 스팸 필터는 주로 영어를 대상으로 하고 있으며, 규칙 기반 필터링보다는 통계적 학습을 통한 필터링 방법을 주로 사용하고 있다. 본 논문에서는 베이즈 정리를 기반으로 하는 3가지 분류 알고리즘을 한글 전자메일을 대상으로 하여 스팸 메일 특히 음란성 메일을 분류하는데 있어 그 성능을 평가하고자 한다. 실험 결과, 단어의 스팸일 확률만을 이용하는 방법이 나이브 베이즈 알고리즘이나 m-estimate를 이용하는 방법보다는 성능이 우수함을 알 수 있었다 특히, 단어의 스팸일 확률만을 이용하는 방법은 false positive rate를 0%로 유지하면서도 다른 방법들보다는 필터링을 잘 해내고 있음을 확인할 수 있었다. 그리고, 자질 선정에서는 명사나 명사/형용사를 사용할 경우에 그 에러율이 가장 적었다.

  • PDF

Monitoring moisture content of timber structures using PZT-enabled sensing and machine learning

  • Chen, Lin;Xiong, Haibei;He, Yufeng;Li, Xiuquan;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.589-598
    • /
    • 2022
  • Timber structures are susceptible to structural damages caused by variations in moisture content (MC), inducing severe durability deterioration and safety issues. Therefore, it is of great significance to detect MC levels in timber structures. Compared to current methods for timber MC detection, which are time-consuming and require bulky equipment deployment, Lead Zirconate Titanate (PZT)-enabled stress wave sensing combined with statistic machine learning classification proposed in this paper show the advantage of the portable device and ease of operation. First, stress wave signals from different MC cases are excited and received by PZT sensors through active sensing. Subsequently, two non-baseline features are extracted from these stress wave signals. Finally, these features are fed to a statistic machine learning classifier (i.e., naïve Bayesian classification) to achieve MC detection of timber structures. Numerical simulations validate the feasibility of PZT-enabled sensing to perceive MC variations. Tests referring to five MC cases are conducted to verify the effectiveness of the proposed method. Results present high accuracy for timber MC detection, showing a great potential to conduct rapid and long-term monitoring of the MC level of timber structures in future field applications.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization (순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘)

  • Joonho Kim;Geonju Chae;Jaemin Park;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-119
    • /
    • 2023
  • The technology that recognizes a soldier's motion and movement status has recently attracted large attention as a combination of wearable technology and artificial intelligence, which is expected to upend the paradigm of troop management. The accuracy of state determination should be maintained at a high-end level to make sure of the expected vital functions both in a training situation; an evaluation and solution provision for each individual's motion, and in a combat situation; overall enhancement in managing troops. However, when input data is given as a timer series or sequence, existing feedforward networks would show overt limitations in maximizing classification performance. Since human behavior data (3-axis accelerations and 3-axis angular velocities) handled for military motion recognition requires the process of analyzing its time-dependent characteristics, this study proposes a high-performance data-driven classifier which utilizes the long-short term memory to identify the order dependence of acquired data, learning to classify eight representative military operations (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). Since the accuracy is highly dependent on a network's learning conditions and variables, manual adjustment may neither be cost-effective nor guarantee optimal results during learning. Therefore, in this study, we optimized hyperparameters using Bayesian optimization for maximized generalization performance. As a result, the final architecture could reduce the error rate by 62.56% compared to the existing network with a similar number of learnable parameters, with the final accuracy of 98.39% for various military operations.

Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering (베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템)

  • 정경용;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.316-325
    • /
    • 2003
  • A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

Committee Learning Classifier based on Attribute Value Frequency (속성 값 빈도 기반의 전문가 다수결 분류기)

  • Lee, Chang-Hwan;Jung, In-Chul;Kwon, Young-S.
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • In these day, many data including sensor, delivery, credit and stock data are generated continuously in massive quantity. It is difficult to learn from these data because they are large in volume and changing fast in their concepts. To handle these problems, learning methods based in sliding window methods over time have been used. But these approaches have a problem of rebuilding models every time new data arrive, which requires a lot of time and cost. Therefore we need very simple incremental learning methods. Bayesian method is an example of these methods but it has a disadvantage which it requries the prior knowledge(probabiltiy) of data. In this study, we propose a learning method based on attribute values. In the proposed method, even though we don't know the prior knowledge(probability) of data, we can apply our new method to data. The main concept of this method is that each attribute value is regarded as an expert learner, summing up the expert learners lead to better results. Experimental results show our learning method learns from data very fast and performs well when compared to current learning methods(decision tree and bayesian).

Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words) (속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2019
  • Over the past decade, the development of the Web explosively increased the data. Feature selection step is an important step in extracting valuable data from a large amount of data. This study proposes a novel opinion mining model based on combining feature selection (FS) methods with Word embedding to vector (Word2vec) and BOW (Bag-of-words). FS methods adopted for this study are CFS (Correlation based FS) and IG (Information Gain). To select an optimal FS method, a number of classifiers ranging from LR (logistic regression), NN (neural network), NBN (naive Bayesian network) to RF (random forest), RS (random subspace), ST (stacking). Empirical results with electronics and kitchen datasets showed that LR and ST classifiers combined with IG applied to BOW features yield best performance in opinion mining. Results with laptop and restaurant datasets revealed that the RF classifier using IG applied to Word2vec features represents best performance in opinion mining.