• 제목/요약/키워드: Bayes theory

검색결과 57건 처리시간 0.028초

베이스 에러율의 상위 경계 최소화에 기반한 고차 곱 근사 방법과 숫자 인식기 결합에의 적용 (A High Order Product Approximation Method based on the Minimization of Upper Bound of a Bayes Error Rate and Its Application to the Combination of Numeral Recognizers)

  • 강희중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.681-687
    • /
    • 2001
  • 다수의 인식기를 결합하여 베이지안 결정 이론 하에서 클래스 분별력을 높이려면, 훈련 데이터 샘플로부터 얻은 클래스 변수와 결정 변수들로 구성된 조건부 엔트로피에 의해서 한정되는 베이스 에러율의 상위 경계를 최소화해야 한다. Wang과 Wong은 베이스 에러율의 상위 경계를 최소화하기 위하여 클래스 변수와 다수의 특징 패턴 변수들로 구성된 고차 확률 분포를 트리 의존관계로 근사하는 1차 근사 방법을 제안하였다. 본 논문에서는 이러한 베이스 에러율의 상위 경계 최소화에 기반한 기존의 1차 트리 의존관계 근사 방법을 확장하여 고차 의존관계까지 고려할 수 있는 확장된 곱 고차 근사 방법을 제안한다. 제안된 근사 방법을 CENPARMI의 무제약 필기 숫자를 인식하는 다수의 숫자 인식기 결합 방법에 적용하여 인식 실험을 하였으며, 이 방법에 의해서 보다 높은 인식율을 얻게 되었다.

  • PDF

베이지안 이론을 활용한 댐 유입량 예측기법 개발 및 적용 (Development and application of dam inflow prediction method using Bayesian theory)

  • 김선호;소재민;강신욱;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.87-87
    • /
    • 2017
  • 최근 이상기후로 인해 국내 가뭄피해가 증가하고 있는 추세이며, 미래 가뭄의 심도 및 지속시간은 증가할 것으로 예측되고 있다. 특히 우리나라는 용수공급의 56.5%를 댐에 의존하여 댐 유역의 가뭄은 생 공 농업용수 공급제한 등의 광범위한 피해를 발생시킬 수 있다. 다만 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 사전에 정확한 댐 유입량 예측이 가능하다면, 용수공급량 조정을 통해 피해를 최소화할 수 있다. 국내에서는 댐 유입량 예측에 ESP (Ensemble Streamflow Prediction) 기법을 활용하고 있으며, ESP 기법은 과거 기상자료를 기반으로 미래를 예측하기 때문에 기상자료, 초기수문조건, 매개변수 등에 불확실성을 가지고 있다. 본 연구에서는 베이지안 이론을 이용하여 댐 예측유입량의 정확도 향상기법을 개발하고 예측성을 평가하고자 하며, 강우유출모델은 ABCD를 활용하였다. 대상유역은 국내의 대표 다목적댐인 충주댐 유역을 선정하였으며, 기상자료는 기상청, 국토교통부 및 한국수자원공사의 지점자료를 수집하였다. 예측성 평가기법으로는 도시적 분석방법인 시계열 분석, 통계적 분석방법인 Skill Score (SS)를 활용하였다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)은 매년 월별 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. 베이지안 기반의 댐 예측유입량(BAYES-ESP)는 ESP의 과소모의하는 경향을 보정하였으며, 다우년에 예측성이 향상되었다. 월별 평균 댐 관측유입량과 ESP, BAYES-ESP의 SS 비교분석 결과 ESP는 유입량 값이 적은 1, 2, 3월에 SS가 양의 값을 가졌으며, 이외의 월에는 음의 값으로 나타났다. BAYES-ESP는 ESP와 관측값이 비교적 선형관계를 나타내는 1, 2, 3월에 ESP의 예측성을 개선시키는 것으로 나타났다. ESP 기법은 강수량의 월별, 계절별 변동성이 큰 우리나라에 적용하기에는 예측성의 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측 연구에 가치가 있는 것으로 판단된다.

  • PDF

신뢰도이론에서 위험측도를 이용한 할증보험료 결정에 대한 고찰 (A Study on the Determination of the Risk-Loaded Premium using Risk Measures in the Credibility Theory)

  • 김현태;전용호
    • 응용통계연구
    • /
    • 제27권1호
    • /
    • pp.71-87
    • /
    • 2014
  • 손해보험의 신뢰도이론에서 순보험료로 사용되는 베이즈보험료는 꼬리위험을 반영하지 못한다는 한계점이 있다. 본 논문에서는 꼬리위험측도를 이용하여 할증보험료를 결정하는데 있어 중요하다고 여겨지는 두 가지 주제를 다루었다. 첫째, 위험측도로부터 유도되는 안전할증은 내재된 담보의 위험을 보다 정확히 반영할 수 있으며, 동시에 베이즈보험료만을 사용할 경우 초래될 수 있는 잘못된 의사결정을 피할 수 있음을 보였다. 둘째, 동일한 사전분포가 주어지더라도 서로 다른 조건부손실분포의 꼬리위험 순위와 그에 상응하는 예측분포의 꼬리위험순위는 일반적으로 다를 수 있음을 모수적 모형에 기반하여 보였다. 따라서 안전할증은 조건부손실분포의 위험측도가 아니라 예측분포의 위험측도를 사용해야 함을 알 수 있다.

베이즈 이론을 활용한 적정 하천설계빈도 결정 (Determination of the Optimal Return Period for River Design using Bayes Theory)

  • 류재희;이진영;김지은;김태웅
    • 대한토목학회논문집
    • /
    • 제38권6호
    • /
    • pp.793-800
    • /
    • 2018
  • 본 연구는 최근 빈번히 발생하는 홍수재해에 대비하고 안정적인 치수대책 수립을 위하여 공학적 판단에 근거한 하천의 적정 설계빈도 결정방안을 제시하였다. 지방하천의 설계빈도는 하천의 중요도 및 지역특성에 따라 최소 50년부터 최대 200년까지 설정되고 있으나, 적용범위가 넓어 하천의 지형적, 치수적 특성을 제대로 반영하지 못하는 실정이다. 본 연구에서는 지방하천의 적정 설계빈도를 결정하기 위하여 7개의 평가인자(시가화 침수면적, 유역면적, 형상계수, 하도경사, 수계 및 하천차수, 배수영향구간, 이상강우 발생빈도)에 대하여 베이즈 이론을 적용하여 가중치를 산정하였다. 또한, 기후변화를 고려한 홍수피해잠재능을 산정하였고, 시군구별 잠재능을 구분하여 적정 설계빈도를 결정하였다. 충청남도 382개 지방하천에 대하여 현행 설계빈도의 적정성을 평가하였다. 382개의 현행 하천설계빈도보다 상향되는 하천은 65개 하천으로 상대적으로 시가화 침수면적이 크게 산정되고 홍수피해잠재능이 큰 지역의 하천이며, 하향되는 하천은 169개로 분석되었다.

WHEN CAN SUPPORT VECTOR MACHINE ACHIEVE FAST RATES OF CONVERGENCE?

  • Park, Chang-Yi
    • Journal of the Korean Statistical Society
    • /
    • 제36권3호
    • /
    • pp.367-372
    • /
    • 2007
  • Classification as a tool to extract information from data plays an important role in science and engineering. Among various classification methodologies, support vector machine has recently seen significant developments. The central problem this paper addresses is the accuracy of support vector machine. In particular, we are interested in the situations where fast rates of convergence to the Bayes risk can be achieved by support vector machine. Through learning examples, we illustrate that support vector machine may yield fast rates if the space spanned by an adopted kernel is sufficiently large.

LCD 패널 상의 불량 검출을 위한 스펙트럴 그래프 이론에 기반한 특성 추출 방법 (Feature extraction method using graph Laplacian for LCD panel defect classification)

  • 김규동;유석인
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.522-524
    • /
    • 2012
  • For exact classification of the defect, good feature selection and classifier is necessary. In this paper, various features such as brightness features, shape features and statistical features are stated and Bayes classifier using Gaussian mixture model is used as classifier. Also feature extraction method based on spectral graph theory is presented. Experimental result shows that feature extraction method using graph Laplacian result in better performance than the result using PCA.

A Distance Approach for Open Information Extraction Based on Word Vector

  • Liu, Peiqian;Wang, Xiaojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2470-2491
    • /
    • 2018
  • Web-scale open information extraction (Open IE) plays an important role in NLP tasks like acquiring common-sense knowledge, learning selectional preferences and automatic text understanding. A large number of Open IE approaches have been proposed in the last decade, and the majority of these approaches are based on supervised learning or dependency parsing. In this paper, we present a novel method for web scale open information extraction, which employs cosine distance based on Google word vector as the confidence score of the extraction. The proposed method is a purely unsupervised learning algorithm without requiring any hand-labeled training data or dependency parse features. We also present the mathematically rigorous proof for the new method with Bayes Inference and Artificial Neural Network theory. It turns out that the proposed algorithm is equivalent to Maximum Likelihood Estimation of the joint probability distribution over the elements of the candidate extraction. The proof itself also theoretically suggests a typical usage of word vector for other NLP tasks. Experiments show that the distance-based method leads to further improvements over the newly presented Open IE systems on three benchmark datasets, in terms of effectiveness and efficiency.

베이지안 분류기를 이용한 소프트웨어 품질 분류 (Software Quality Classification using Bayesian Classifier)

  • 홍의석
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.

Language Matters: A Systemic Functional Linguistics-Enhanced Machine Learning Framework for Cyberbullying Detection

  • Raghad Altowairgi;Ala Eshamwi;Lobna Hsairi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.192-198
    • /
    • 2023
  • Cyberbullying is a growing problem among adolescents and can have serious psychological and emotional consequences for the victims. In recent years, machine learning techniques have emerged as promising approach for detecting instances of cyberbullying in online communication. This research paper focuses on developing a machine learning models that are able to detect cyberbullying including support vector machines, naïve bayes, and random forests. The study uses a dataset of real-world examples of cyberbullying collected from Twitter and extracts features that represents the ideational metafunction, then evaluates the performance of each algorithm before and after considering the theory of systemic functional linguistics in terms of precision, recall, and F1-score. The result indicates that all three algorithms are effective at detecting cyberbullying with 92% for naïve bayes and an accuracy of 93% for both SVM and random forests. However, the study also highlights the challenges of accurately detecting cyberbullying, particularly given the nuanced and context-dependent nature of online communication. This paper concludes by discussing the implications of these findings for future research and the development of practical tool for cyberbullying prevention and intervention.

Development of a Secure Routing Protocol using Game Theory Model in Mobile Ad Hoc Networks

  • Paramasivan, Balasubramanian;Viju Prakash, Maria Johan;Kaliappan, Madasamy
    • Journal of Communications and Networks
    • /
    • 제17권1호
    • /
    • pp.75-83
    • /
    • 2015
  • In mobile ad-hoc networks (MANETs), nodes are mobile in nature. Collaboration between mobile nodes is more significant in MANETs, which have as their greatest challenges vulnerabilities to various security attacks and an inability to operate securely while preserving its resources and performing secure routing among nodes. Therefore, it is essential to develop an effective secure routing protocol to protect the nodes from anonymous behaviors. Currently, game theory is a tool that analyzes, formulates and solves selfishness issues. It is seldom applied to detect malicious behavior in networks. It deals, instead, with the strategic and rational behavior of each node. In our study,we used the dynamic Bayesian signaling game to analyze the strategy profile for regular and malicious nodes. This game also revealed the best actions of individual strategies for each node. Perfect Bayesian equilibrium (PBE) provides a prominent solution for signaling games to solve incomplete information by combining strategies and payoff of players that constitute equilibrium. Using PBE strategies of nodes are private information of regular and malicious nodes. Regular nodes should be cooperative during routing and update their payoff, while malicious nodes take sophisticated risks by evaluating their risk of being identified to decide when to decline. This approach minimizes the utility of malicious nodes and it motivates better cooperation between nodes by using the reputation system. Regular nodes monitor continuously to evaluate their neighbors using belief updating systems of the Bayes rule.