KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.2996-3011
/
2017
With rapid growth of web technology and dissemination of smart devices, social networking service(SNS) is widely used. As a result, huge amount of data are generated from SNS such as Twitter, and sentiment analysis of SNS data is very important for various applications and services. In the existing sentiment analysis based on the $Na{\ddot{i}}ve$ Bayes algorithm, a same number of attributes is usually employed to estimate the weight of each class. Moreover, uncountable and meaningless attributes are included. This results in decreased accuracy of sentiment analysis. In this paper two methods are proposed to resolve these issues, which reflect the difference of the number of positive words and negative words in calculating the weights, and eliminate insignificant words in the feature selection step using Multinomial $Na{\ddot{i}}ve$ Bayes(MNB) algorithm. Performance comparison demonstrates that the proposed scheme significantly increases the accuracy compared to the existing Multivariate Bernoulli $Na{\ddot{i}}ve$ Bayes(BNB) algorithm and MNB scheme.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1573-1582
/
2015
In lifetime data analysis, it is generally known that the lifetimes of test items may not be recorded exactly. There are also situations wherein the withdrawal of items prior to failure is prearranged in order to decrease the time or cost associated with experience. Moreover, it is generally known that more than one cause or risk factor may be present at the same time. Therefore, analysis of censored competing risks data are needed. In this article, we derive the Bayes estimators for the entropy function under the exponential distribution with an unknown scale parameter based on multiply Type II censored competing risks data. The Bayes estimators of entropy function for the exponential distribution with multiply Type II censored competing risks data under the squared error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) are provided. Lindley's approximate method is used to compute these estimators.We compare the proposed Bayes estimators in the sense of the mean squared error (MSE) for various multiply Type II censored competing risks data. Finally, a real data set has been analyzed for illustrative purposes.
Let $X_1, ....$X_P be p($\geq$2) independent random variables, where each X1 has a gamma distribution with $k_i and ${\heta}_i$. The problem is to simultaneously estimate p gammar parameters ${\heta}_i$ under entropy loss where the parameters are believed priori. Hierarchical bayes(HB) and empirical bayes(EB) estimators are investigated. Next computer simulation is studied to compute the risk percentage improvement of the HB, EB and the estimator of Dey et al.(1987) compared to MVUE of ${\heta}$.
A commercial nuclear power station contains at least two emergency diesel generators(EDG) to control the risk of severe core damage during station blackout accidnets. Therefore, thereliability of the EDG's to start and load-run on demand must be maintained at a sufficiently high level. Until now, a simple assessment of start and load-run success rates was used to calculate the EDG reliability. However, this method has been found to contain many defects. Recently, the work of Martz et al.(1996) proposed the use of the Bayes estimator to find EDG reliability. Shim(1996) proposed a confidence interval for the Bayes estimator, compare the above two methods. In this paper, we introduce the notion of "Composite Reliablility" to estimate the reliability of nuclear-power plant EDG, and using practical examples, illustrate which method is more a, pp.opriate in our situation.situation.
This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).
본 연구에서는 충주댐 유역에 대해 다목적 댐 예측유입량 산정기법 BAYES-ESP를 개발하고 평가하였다. BAYES-ESP 기법은 기존 ESP (Ensemble Streamflow Prediction) 기법에 베이지안 이론을 적용하여 개발하였으며, 수문모델은 ABCD를 활용하였다. 입력자료는 기온, 강수량 자료와 댐 관측유입량 자료를 활용하였으며, 기온 및 강수량은 기상청, 국토교통부, 한국수자원공사의 지점관측자료, 댐 관측유입량은 한국수자원공사의 자료를 이용하였다. 적용성 평가방법은 시계열 분석과 Skill Score를 활용하였으며, 평가기간은 1986~2015년이다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)는 매년 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. BAYES-ESP 댐 예측유입량(BAYES-ESP)는 ESP가 관측유입량에 비해 과소모의하는 경향을 보정하였으며, 특히 다우년에 개선효과가 있는 것으로 나타났다. 월별 평균 댐 관측유입량과의 Skill Score 비교분석결과 ESP는 1~3월에 SS가 비교적 높은 값을 보였으며, 나머지 월에는 음의 값을 나타내었다. BAYES-ESP는 ESP와 관측 값 간의 선형적 관계를 갖는 1~3월에 ESP의 정확도를 향상시키는 것으로 나타났다. ESP 기법은 국내 강수특성상 우리나라에 적용하기에는 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측연구에 가치가 있다고 판단된다.
The objectives of this thesis are : first, to estimate the parameters and Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution ; and secondly, to compare the Bayes estimators of Pr[X < Y] with maximum likelihood estimator of Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution. Through the Monte Carlo Simulation, we observed that the Bayes estimators of Pr[X < Y] perform better than the maximum likelihood estimator of Pr[X < Y] and the Bayes estimator of Pr[X < Y] with gamma prior distribution performs better than with vague prior distribution with respect to bias and mean squared error in the Marshall and Olkin's Bivariate Exponential Distribution.
Communications for Statistical Applications and Methods
/
제8권2호
/
pp.453-464
/
2001
A commercial nuclear power station contains at least tow emergency diesel generators(EDG) to control the risk of severe core damage during station blackout accidents. Therefore, the reliability of the EDG's to start and load-run on demand must be maintained at a sufficiently high level. Probabilistic safety assessments(PSA) are increasingly being used to quantify the public risk of operating potentially hazardous systems such as nuclear power reactors. In this paper, to perform PSA, we will introduce three different types of data and use Bayes procedure to estimate the error rate of nuclear power plant EDG, and using practical examples, illustrate which method is more reasonable in our situation.
Communications for Statistical Applications and Methods
/
제6권1호
/
pp.221-235
/
1999
Let be $X_1$,...,$X_p$, $p\geq2$ independent random variables where each $X_i$ has a gamma distribution with $\textit{k}_i$ and $\theta_i$ The problem is to simultaneously estimate $\textit{p}$ gamma parameters $\theta_i$ and $\theta_i{^-1}$ under entropy loss where the parameters are believed priori. Hierarch ical Bayes(HB) and empirical Bayes(EB) estimators are investigated. And a preference of HB estimator over EB estimator is shown using Gibbs sampler(Gelfand and Smith 1990). Finally computer simulation is studied to compute the risk percentage improvements of the HB estimator and the estimator of Dey Ghosh and Srinivasan(1987) compared to UMVUE estimator of $\theta^{-1}$.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.981-996
/
2003
Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.