• 제목/요약/키워드: Bayes Classifier

검색결과 150건 처리시간 0.022초

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

Serial Communication-Based Fault Diagnosis of a BLDC Motor Using Bayes Classifier

  • Suh, Suhk-Hoon;Woo, Kwang-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.308-314
    • /
    • 2003
  • This paper presents a serial communication based fault diagnosis scheme for a brushless DC (BLDC) motor using parameter estimation and Bayes classifier. The presented scheme consists of a smart network board, and a fault detection and isolation (FDI) master. The smart network board is installed near the BLDC motor drive system to acquire motor data and transmit motor data to the FDI-master via serial communication channel. The FDI-master estimates BLDC motor resistance to detect symptom of faults, and assign symptom to fault type using Bayes classifier. In this scheme, since communication time delay has a serious effect on performance, periodic and fixed communication protocol is designed. Hence, the delay time is priory known. By experiment result, presented scheme was verified.

Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구 (A Study on Incremental Learning Model for Naive Bayes Text Classifier)

  • 김제욱;김한준;이상구
    • 정보기술과데이타베이스저널
    • /
    • 제8권1호
    • /
    • pp.95-104
    • /
    • 2001
  • In the text classification domain, labeling the training documents is an expensive process because it requires human expertise and is a tedious, time-consuming task. Therefore, it is important to reduce the manual labeling of training documents while improving the text classifier. Selective sampling, a form of active learning, reduces the number of training documents that needs to be labeled by examining the unlabeled documents and selecting the most informative ones for manual labeling. We apply this methodology to Naive Bayes, a text classifier renowned as a successful method in text classification. One of the most important issues in selective sampling is to determine the criterion when selecting the training documents from the large pool of unlabeled documents. In this paper, we propose two measures that would determine this criterion : the Mean Absolute Deviation (MAD) and the entropy measure. The experimental results, using Renters 21578 corpus, show that this proposed learning method improves Naive Bayes text classifier more than the existing ones.

  • PDF

Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier

  • Sharma, Vikas;Mir, Aftab Ahmad;Sarwr, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 2020
  • Rice (Oryza Sativa) is an important source of food for the people of our country, even though of world also .It is also considered as the staple food of our country and we know agriculture is the main source country's economy, hence the crop of Rice plays a vital role over it. For increasing the growth and production of rice crop, ground-breaking technique for the detection of any type of disease occurring in rice can be detected and categorization of rice crop diseases has been proposed in this paper. In this research paper, we perform comparison between two classifiers namely MDC and Bayes' classifiers Survey over different digital image processing techniques has been done for the detection of disease in rice crops. The proposed technique involves the samples of 200 digital images of diseased rice leaf images of five different types of rice crop diseases. The overall accuracy that we achieved by using Bayes' Classifiers and MDC are 69.358 percent and 81.06 percent respectively.

Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

  • Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.603-614
    • /
    • 2022
  • The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.

다항시행접근 단순 베이지안 문서분류기의 개선 (Improving Multinomial Naive Bayes Text Classifier)

  • 김상범;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.259-267
    • /
    • 2003
  • 단순 베이지언 분류모형은 구현이 간단하고 효율적이기 때문에 실용적으로 사용하기에 적합하다. 그러나 이 분류모형은 많은 기계학습 도메인에서 우수한 성능을 보임에도 불구하고 문서분류에 적용되었을 경우에는 그 성능이 매우 낮은 것으로 알려져왔다. 본 논문에서는 단순 베이지언 분류모형중 가장 성능이 우수한 것으로 알려진 다항 시행접근 단순 베이지언 분류모형을 개선하는 세가지 방법을 제안한다. 첫 번째는 범주에 대한 단어의 확률추정방법을 문서모델에 기반하여 개선하는 것이고, 두 번째는 문서의 길이에 따라 범주와의 관련성이 선형적으로 증가하는 것을 억제하기 위해 길이에 대한 정규화를 수행하는 것이며, 마지막으로 범주판정에 중요한 역할을 하는 단어들의 영향력을 높여주기 위하여 상호정보가중 단순 베이지언 분류방법을 사용하는 것이다. 제안하는 방법들은 문서분류기의 성능 평가를 위한 벤치마크 문서집합인 Reuters21578과 20Newsgroup에서 기존의 방범에 비해 상당한 성능향상을 가져옴을 알 수 있었다.

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상 (Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier)

  • 박선;이성로
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1881-1888
    • /
    • 2011
  • 적조란 유해조류의 일시적인 대 번식인 자연현상으로 어패류를 집단 폐사 시킨다. 적조에 의한 양식어업의 피해는 매년 발생하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해를 최소화 시킬 수 있다. 적조발생 예측시 나이브베이스 분류자를 이용하면 좋은 예측결과를 얻을 수 있다. 그러나 나이브베이스를 이용한 결과는 단순한 발생 여부 만을 판별 할뿐 발생하는 적조가 어느 정도 증가 할지는 알 수 없다. 본 논문은 퍼지 추론과 나이브베이스 분류자를 이용한 새로운 적조발생 예측 방법을 제안한다. 제안방법은 적조 발생 예측의 정확률을 향상시키면서 적조생물 밀도의 증가율을 예측할 수 있다.

칼라 컴퓨터시각을 이용(利用)한 활엽수(闊葉樹) 부재(部材)의 색(色)에 의한 선별(選別) (Color Grading of Hardwood Dimension Parts with Color Computer Vision)

  • 유수남;게리 쿠르쯔
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.288-295
    • /
    • 1993
  • 본 연구는 칼라 컴퓨터시각을 이용하여 가구에 이용되고 있는 활엽수 부재의 색에 의한 선별법을 제시하고자 수행되었다. 붉은 오우크 가구 부재를 대상으로 칼라 컴퓨터시각 시스템을 이용 화상을 얻은후 R,G,B 농도값을 근거로 나무결, 나무결함, 3가지의 색깔 즉 핑크색, 흰색, 갈색의 나무부분, 이밖에 배경에 대한 지식 베이스화를 행하여 각 부재에 대하여 이들의 비율을 quadratic Bayes classifier를 이용 구하였으며, 이 중 나무결, 나무결함, 배경을 제외한 3가지 색상에 대하여 부재가 갖는 상대적인 비율을 근거로 qadratic Bayes classifier와 neural network를 각각 이용하여 핑크색, 흰색, 갈색의 3가지 부재로 구분하였다. 선별의 정확도는 기존의 육안에 의한 선별을 기준으로 비교하였는데 qadratic Bayes classifier에 의한 선별이 91.7%, neural network을 이용한 선별이 96.7%의 높은 정확도를 보였다. 따라서 가구의 품질향상을 위한 색에 의한 부재 선별에 칼라 컴퓨터시각이 유용하게 이용될 수 있을 것으로 판단되었다.

  • PDF