• 제목/요약/키워드: Bay K 8644

검색결과 63건 처리시간 0.019초

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.

Influence of Ketamine on Catecholamine Secretion in the Perfused Rat Adrenal Medulla

  • Ko, Young-Yeob;Jeong, Yong-Hoon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권3호
    • /
    • pp.101-109
    • /
    • 2008
  • The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine ($30{\sim}300{\mu}M$), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, $100{\mu}M$) and McN-A-343 (a selective muscarinic M1 receptor agonist, $100{\mu}M$). Also, in the presence of ketamine ($100{\mu}M$), the CA secretory responses evoked by veratridine (a voltage-dependent $Na^+$ channel activator, $100{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, thiopental sodium ($100{\mu}M$) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both $Ca^{2+}$ and $Na^+$ through voltage-dependent $Ca^{2+}$ and $Na^+$ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting $Ca^{2+}$ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.

Inhibitory Effects of Total Ginseng Saponin on Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Jang, Seok-Jeong;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.176-190
    • /
    • 2011
  • There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.

심근 수축에 있어서 Calcium 이온의 기원에 관한 약리학적 연구 (The Pharmacological Studies on the Origin of Calcium ion in Myocardial Contraction)

  • 고창만;김경환
    • 대한약리학회지
    • /
    • 제30권1호
    • /
    • pp.67-73
    • /
    • 1994
  • Na-Ca 교환은 calcium 이온을, 세포 내외의 Na 이온 농도차에 의해서 형성되는 원동력의 방향에 따라, 세포내로(역방향 Na-Ca 교환), 혹은 세포밖으로(정방향 Na-Ca 교환) 이동시킨다. 그러므로 Na-Ca 교환은 심근 수축 운동의 조절 기전의 하나로 받아 들여지고 있다. 그러나, 세포내의 Na 이온 농도는 항상 세포외의 농도보다 낮으므로, 역방향 Na-Ca 교환의 존재와 아울러 이의 심근 수축에 있어서의 역할 가능성에 대해 많은 연구자들이 회의를 가지고 있는 것이 사실이다. 그러므로 본 연구는 흰쥐의 좌심방을 이용하여, 역방향 Na-Ca 교환의 존재 여부와 그 역할의 존재 가능성을 추구하여 보고자 하였다. 흰쥐의 좌심방은 전기장 자극(0.5msec, supramaximal voltage)으로 수축을 유발하고, 자극 빈도를 안정시 4Hz에서 0.4, 1, 8Hz로 변동시킬때 그 수축 장력에서 특징적인 역 사다리 효과(negative staircase effect)가 나타내었으나, 이때 $^{45}Ca$ 섭취는 저빈도로 갈수록, 또한 고빈도로 갈수록 증가되는 이원적인 증가를 나타내었다 자극 빈도를 4Hz 에서 0.4Hz로 변동시에는 수축 장력이 특징적인 삼단계 변환, 즉 급격히 증가하는 첫단계에 이어 급격하게 감소하는 이단계와 안정되어지는 삼단계로 나타났다. $^{45}Ca$ 섭취도 장력 변동과 같은 양상으로 처음 30초 동안에 현저하게 증가한 후 감소되었다. Na-Ca 억제 약물인 benzamil은 $10^{-5}M$에서부터 $3{\times}10^{-4}M$까지 용량에 비례하여 특히 초기의 장력증가를 봉쇄하였다. Bay K-8644$(3{\times}10^{-5}M)$ 처치는 자극 빈도 감소에 따른 수축력 증가를 현저하게 항진시켰으며, benzamil처치는 이때에도 억압을 나타내었다. Verapamil $3{\times}10^{-5}M$ 전처치시에는 4Hz 자극시의 수축 운동은 완전히 소실시켰으나, 0.4 혹은 1 Hz로 바꿈에 따라 수축 운동이 재현되었다. 이때 $^{45}Ca$ 섭취는 verapamil을 전처치하지 않은 경우보다 현저하게 항진되었다. 이상의 결과로 보아, 흰쥐의 좌심방에서 자극 빈도 감소후에는, 먼저 역방향 Na-Ca 교환에 의해 calcium이온이 세포내로 유입되어 수축운동의 항진이 유발되고, 이어 Na-Ca 교환이 정방향으로 변환되어 calcium이온을 세포밖으로 유출시킴에 따라 수축 운동이 감소된다고 생각한다.

  • PDF

Suppressive Impact of Ginsenoside-Rg2 on Catecholamine Secretion from the Rat Adrenal Medulla

  • Ha, Kang-Su;Kim, Ki-Hwan;Lim, Hyo-Jeong;Ki, Young-Jae;Koh, Young-Youp;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • 제27권2호
    • /
    • pp.86-98
    • /
    • 2021
  • This study was designed to characterize the effect of ginsenoside-Rg2 (Rg2), one of panaxatriol saponins isolated from Korean ginseng root, on the release of catecholamines (CA) in the perfused model of the rat adrenal medulla, and also to establish its mechanism of action. Rg2 (3~30 µM), administered into an adrenal vein for 90 min, depressed acetylcholine (ACh)-induced CA secretion in a dose- and time-dependent manner. Rg2 also time-dependently inhibited the CA secretion induced by 3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyltrimethyl ammonium chloride (McN-A-343), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), and angiotensin II (Ang II). Also, during perfusion of Rg2, the CA secretion induced by high K+, veratridine, cyclopiazonic acid, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644) depressed, respectively. In the simultaneous presence of Rg2 and Nω-nitro-L-arginine methyl ester hydrochloride ʟ-NAME), the CA secretion induced by ACh, Ang II, Bay-K-8644 and veratridine was restored nearly to the extent of their corresponding control level, respectively, compared to those of inhibitory effects of Rg2-treatment alone. Virtually, NO release in adrenal medulla following perfusion of Rg2 was significantly enhanced in comparison to the corresponding spontaneous release. Also, in the coexistence of Rg2 and fimasartan, ACh-induced CA secretion was markedly diminished compared to the inhibitory effect of fimasartan-treated alone. Collectively, these results demonstrated that Rg2 suppressed the CA secretion induced by activation of cholinergic as well as angiotensinergic receptors from the perfused model of the rat adrenal gland. This Rg2-induced inhibitory effect seems to be exerted by reducing both influx of Na+ and Ca2+ through their ionic channels into the adrenomedullary cells as well as by suppressing Ca2+ release from the cytoplasmic calcium store, at least through the elevated NO release by activation of NO synthase, which is associated to the blockade of neuronal cholinergic and AT1-receptors. Based on these results, the ingestion of Rg2 may be helpful to alleviate or prevent the cardiovascular diseases, via reduction of CA release in adrenal medulla and consequent decreased CA level in circulation.

Influence of TMB-8 on Secretion of Catecholamines from the Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Kim, Chong-Dae;Ahn, Gi-Wan
    • Archives of Pharmacal Research
    • /
    • 제15권2호
    • /
    • pp.115-125
    • /
    • 1992
  • An attempt was made to investigate the effect of TMB-8[3, 4, 5-trimethoxybenzoate-8 (N, N-diethylamino) octyl ester], which is known to be an inhibitor of intracellular $Ca^{2+}$ release, on catecholamines (CA) secretion evoked by Ach, excess $K^+$, DMPP, McN-A-343 and caffeine from the isolated perfused rat adrenal glands and to cleaify its mechanism of action. The pretreatment with a low dose of TMB-8 $(10 \mu{M)}$ for 20 min led to marked inhibition in CA secretion evoked by Ach (5.32 mM), excess K^+$ (56 mM), DMPP $(100\;\mu{M)}$, McN-A-343 $(100 \mu{M)}$ and BAY-K 8644 $(10^{-5}M)$. Caffeine-induced CA secretion was simimlar to that of control only during the first periods (0-3 min) but thereafter maked inhibition in CA secretion evoked by caffeine was observed during the rest periods up to 30 min. The increased moderate concentration of TMB-8 $(30 \;\mu{M)}$ caused the result similar to that of $10 \;\mu{M}$ TMB-8. However, in adrenal glands preloaded with a high dose of TMB-8 $(100\;\mu{M)}$, CA releases evoked by Ach, excess $K^+$, DMPP, McN-A-343 and caffeine were almost completely blocked by the drug. These experimental data demonstrate that TMB-8 may inhibit cholinergic receptor-mediated and also depolarization-dependent Ca secretion, suggenesting that these TMB-8 effects seem to be mediated through inhibiting influx of extracellular calcium into the rat adrenal medullary chromaffin cells as well as reducing the release of calcium from intracellular sources.

  • PDF

Involvement of Ca2+/Calmodulin Kinase II (CaMK II) in Genistein-Induced Potentiation of Leucine/Glutamine-Stimulated Insulin Secretion

  • Lee, Soo-Jin;Kim, Hyo-Eun;Choi, Sung-E;Shin, Ha-Chul;Kwag, Won-Jae;Lee, Byung-Kyu;Cho, Ki-Woong;Kang, Yup
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.167-174
    • /
    • 2009
  • Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energygenerating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or $Ca^{2+}$ channel opener Bay K8644. Genistein at a concentration of $50{\mu}M$ showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of $Ca^{2+}$/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of $[Ca^{2+}]_i$ and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

Influence of Tacrine on Catecholamine Secretion in the Perfused Rat Adrenal Gland

  • Jang, Seok-Jeong;Yang, Won-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.207-214
    • /
    • 2002
  • The present study was designed to clarify whether tacrine affects the release of catecholamines (CA) from the isolated perfused model of rat adrenal gland or not and to elucidate the mechanism of its action. Tacrine $(3{\times}10^{-5}{\sim}3{\times}10^{-4}\;M)$ perfused into an adrenal vein for 60 min inhibited CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP (a selective neuronal nicotinic agonist, $10^{-4}$ M for 2 min) and McN-A-343 (a selective muscarinic M1-agonist, $10^{-4}$ M for 2 min) in relatively dose- and time- dependent manners. However, tacrine failed to affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Tacrine itself at concentrations used in the present experiments did not also affect spontaneous CA output. Furthermore, in the presence of tacrine $(10^{-4}\;M),$ CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, $10^{-4}\;M),$ but not by cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase,\;10^{-4}\;M),$ was relatively time-dependently attenuated. Also, physostigmine $10^{-4}\;M),$ given into the adrenal gland for 60 min, depressed CA secretory responses evoked by ACh, McN-A-343 and DMPP while did not affect that evoked by high $K^+.$ Collectively, these results obtained from the present study demonstrate that tacrine greatly inhibits CA secretion from the perfused rat adrenal gland evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by direct membrane-depolarization. It is suggested that this inhibitory effect of tacrine may be exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells without $Ca^{2+}$ release from the cytoplasmic calcium store, that is relevant to the cholinergic blockade. Also, the mode of action between tacrine and physostigmine in rat adrenomedullary CA secretion seems to be similar.

Cotinine Inhibits Catecholamine Release Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Koh, Young-Yeop;Jang, Seok-Jeong;Lim, Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.747-755
    • /
    • 2003
  • The aim of the present study was to clarify whether cotinine affects the release of catecholamines (CA) from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, in comparison with the response of nicotine. Cotinine (0.3∼3 mM), when perfused into an adrenal vein for 60 min, inhibited CA secretory responses evoked by ACh (5.32 mM), DMPP (a selective neuronal nicotinic agonist, 100 $\mu$M for 2 min) and McN-A-343 (a selective muscarinic $M_1 -agonist, 100 \mu$ M for 2 min) in dose- and time-dependent manners. However, cotinine did not affect CA secretion by high $K^+$ (56 mM). Cotinine itself also failed to affect basal CA output. Furthermore, in the presence of cotinine (1 mM), CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, 10 $\mu$ M) and cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase, 10 \mu$ M) were relative time-dependently attenuated. However, nicotine (30$\mu$ M), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh and high $K^+$, followed by the inhibition later, while it time-dependently depressed the CA release evoked by McN-A-343 and DMPP. Taken together, these results suggest that cotinine inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by the direct membrane-depolarization. It seems that this inhibitory effect of cotinine may be exerted by the cholinergic blockade, which is associated with blocking both the calcium influx into the rat adrenal medullary chromaffin cells and $Ca^{2+}$ release from the cytoplasmic calcium store. It also seems that there is a big difference in the mode of action between cotinine and nicotine in the rat adrenomedullary CA secretion.

The Effect of Tyrosine Kinase Inhibitors on the L-type Calcium Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제39권3호
    • /
    • pp.215-220
    • /
    • 2006
  • Objective : Tyrosine kinase inhibitors may be useful in the management of cerebral vasospasm. It has not yet been reported whether L-type $Ca^{2+}$ channels playa role in tyrosine kinase inhibitors-induced vascular relaxation of cerebral artery. This study was undertaken to clarify the role of L-type $Ca^{2+}$ channels in tyrosine kinase inhibitors-induced vascular relaxation, and to investigate the effect of tyrosine kinase inhibitors on L-type $Ca^{2+}$ channels currents in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Results : Patch clamp studies revealed a whole-cell current which resembles the L-type $Ca^{2+}$ current reported by others. The amplitude of this current was decreased by nimodipine and increased by Bay K 8644. Genistein[n=5], tyrphostin A-23[n=3]. A-25[n=6] $30{\mu}M$ reduced the amplitude of the L -type $Ca^{2+}$ channel current in whole cell mode. In contrast, diadzein $30{\mu}M$ [n=3]. inactive analogue of genistein, did not decrease the amplitude of the L-type $Ca^{2+}$ channels current. Conclusion : These results suggest that tyrosine kinase inhibitors such as genistein, tyrphostin A-23, A-25 may relax cerebral vessel through decreasing level of intracellular calcium, [$Ca^{2+}$]i, by inhibition of L-type $Ca^{2+}$ channel.