• Title/Summary/Keyword: Battery testing system

Search Result 61, Processing Time 0.022 seconds

A Study on Maintainability Improvement for Underwater Weapon Training Vehicle (수중무기 훈련탄의 정비성 향상방안 연구)

  • Jeong, Jinseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • In this paper, we have proposed novel technique to improve maintainability for training vehicle of underwater weapon system. In case of under water weapon, the fire procedure is related with operation of expulsion system in submarines. So the submarine crews should practice the complex fire procedure of weapon system by using training vehicle, which is safer and cheaper than operational weapon. After emitted from submarine, the training vehicle rise to the surface and should be withdrawn from the sea. The recovered training vehicle is transported to maintenance depot and pass through the recycling procedure including disassembling the vehicle, data acquisition & analysis, battery charge, replacing expandable components, testing the captive equipment, and assembling the vehicle. The disassembling & assembling of training vehicle which is composed of watertight section or airframe, is time-consuming work. So in this paper, we have studied the elements of recycling procedure and propose the method to exclude the assembling & disassembling work for maintainability improvement.

A study of charge and discharge strategy analysis on HEV battery under urban dynamometer driving schedule (도시운전모드 하에서 HEV 배터리 충.방전 전략 분석에 대한 연구)

  • Kim, Seong-Gon;Jeong, Ki-Yun;Yang, In-Beom;Kim, Deok-Jin;Lee, Chun-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.247-249
    • /
    • 2007
  • Urban dynamometer driving schedule(FTP-75 mode) plays very significant role on automotive emission test, due to reference point. The overall system energy efficiency of a HEV(Hybrid Electric Vehicle) is highly dependent on the energy management strategy employed. An energy source is the heart of a HEV. In order to applicable to a vehicle component, it must be need to real world test result. But, the present state of things have numerous problems. In this paper, be studied performed based on HEV simulation software in virtual world and chassis dynamometer test in real world and the result make a comparative. Toyota Prius vehicle was adapted as a modeling and real testing to evaluate the hybrid components and energy balancing management. The point at issue is voltage and current analysis for HEV battery SOC(State of Charge), and verification for energy.

  • PDF

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

A Performance Testing Device of Drycell (건전지의 성능평가 장치)

  • Jeong, Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.171-175
    • /
    • 2011
  • In this paper, I have developed a high-speed and high-resolution measuring device in order to check the performance of drycell. The system is developed for the drycell manufacturing plant. Measuring time is one of key factors to inference on the production speed. So the developed system is designed to generate the classified result up to 1200ea/min. In the other words, each product can be classified within 25ms. There have been many studies to estimate both state of charge as well as state of health, such as OCV (Open Circuit Voltage), SC (Short Circuit) and measuring impedance with frequency pulse. But those methods take a few second due to surface discharge. To overcome the phenomenon, I developed the method to engage the reverse current to two electrodes of battery. As a result, I could achieve to measure the indigenous capacity without the problem of surface discharge.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Cycle-life Test Time Reduction in Secondary Rechargeable Batteries by Combining Different Types of Acceleration (서로 다른 가속기법의 결합을 통한 2차 전지 사이클 시험 시간의 단축)

  • Park, Jong-In;Park, Jung-Won;Jung, Min-Ho;Huh, Yang-Hyun;Bae, Suk-Joo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.153-161
    • /
    • 2008
  • 신뢰성 평가 시험은 종종 성능 평가에 장기간의 시간이 요구되며, 전체 생산비용까지 증가시키는 문제점을 안고 있다 스트레스를 이용한 가속수명시험은 제품의 신뢰성 고장과 밀접한 관련이 있는 고장 메커니즘의 촉진을 통해 고장에 이르는 기간을 단축함으로써 신뢰성 평가의 효율성을 도모할 수 있다. 본 연구에서는 이러한 스트레스 가속 시험에 빈도가속(Usage-Rate Acceleration) 또는 판정가속(Tightening Critical-Values) 등을 결합하여 한층 높은 가속효과를 도모하는 방법을 제안하고, 국내에서 생산되고 있는 2차 전지 제품에 대한 실제 시험 사례분석을 통해 결합된 가속방법의 효과를 실증적으로 보여주고 있다.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism (전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구)

  • Kim, Il-Jung;Choi, Yeon-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

CC-CV Optimization for 3-Phase Full-Bridge Converter for Battery Pack Testing System (배터리 팩 시험기 용 3상 양방향 풀브릿지 컨버터 CC-CV 제어 최적 설계)

  • Kwon, Yong-Hoon;seong, Ho-Jae;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.443-444
    • /
    • 2017
  • 본 논문에서는 배터리 팩 시험기에 사용되는 토폴로지인 3상 양방향 풀 브릿지 컨버터의 CC-CV 최적 설계에 대해 제안한다. 대용량 배터리 팩 시험기를 구성하는 소자들은 높은 정격이 요구되고 그에 따라 부피가 커지는 단점이 있다. 이러한 단점을 3상 양방향 풀 브릿지 컨버터를 사용하여 보완을 할 수 있지만 까다로운 회로 해석이 요구된다. 이 배터리 팩 시험기에 사용되는 복잡한 토폴로지를 스위칭 방식에 따라 간단하게 모델링하고, 그에 맞게 정전류 및 정전압 제어 시뮬레이션을 수행하여 얻은 결과를 통해 타당성을 검증하였다.

  • PDF

A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략)

  • Kim, Sang-Jin;Kwon, Min-Ho;Choi, Se-Wan;Paik, Seok-Min;Kim, Mi-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.