• Title/Summary/Keyword: Battery size

Search Result 492, Processing Time 0.024 seconds

A study on the Active Material FeS2 in Battery Fabricated by Mechanical Alloying

  • Jung Woo-Hyun;Ahn In-Shup;Ahn Hyo-Jun;Bae Sung-Yeal;Sung Tek-Kyoung;Kim Tae-Bum;Kim You-Young
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • As the electrodes of secondary battery are made with sulfur compounds, excellent electrode system of environmental non-toxicity, high specific energy density and low material cost can be obtained. In this study, the $FeS_2$ fine compound powders for active material in the battery were synthesized by mechanical alloying. Fine Fe-53.5 wt.%S powders of 450 nm of mean size were fabricated by mechanical alloying for 60 hours at the horizontal attritor. As the mechanical alloying time increases, particle size of Fe-53.5 wt.%S was decreased and steady state of Fe-53.5 wt.%S compound powders was obtained at 30 hours. Fe-53.5 wt.%S cathode shows the excellent discharge capacity (1011 mAh/g).

Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple (주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

Deep Learning-based X-ray Inspection for Battery Defect Detection (배터리 불량 검출을 위한 딥러닝 기반 X-ray 검사)

  • Daejin Jeong;Heon Huh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.147-153
    • /
    • 2024
  • X-rays are extensively employed for non-destructive inspection, applied to packaged food, human anatomy, and industrial products. Recently, this technology has extended to inspecting batteries in electric vehicles. Given the challenge of manual inspection for a substantial volume of batteries, deep learning is leveraged to detect battery defects. However, the effectiveness of deep learning heavily depends upon data size, and acquiring authentic defective images is a difficult and time-consuming task. In this study, we use data augmentation and investigate the impact of data size on battery inspection performance. The results provide valuable insights for enhancing the capabilities of the inspection process.

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS (전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석)

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging (NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어)

  • Kim, Chi Heon;Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.57-61
    • /
    • 2016
  • Thick film sealing glass paste is required for cell packaging of NaS based battery for energy storage system, to join the beta-alumina electrolyte tube and the alpha-alumina battery cell cap components. This paper presents the effect of the particle sizes of seal glass powder and the sealing temperatures on the microstructure of the glass sealants was investigated. It was found that the larger in the particle size of seal glass powder, the smaller the pore volume and the number of pores in a unit area. Also, the number of pores decreased with increasing the sealing temperatures while the pore size was increased. This result enables the control of porosity, pore distribution and number of pores in a microstructure of glass sealing component by proper selection of glass powders particle size and sealing temperature.

Performance Improvement of a Bidirectional DC-DC Converter for Battery Chargers using an LCLC Filter

  • Moon, Sang-Ho;Jou, Sung-Tak;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.560-573
    • /
    • 2015
  • In this paper, a battery charger is introduced for an interleaved DC-DC converter with an LCLC filter. To improve the overall performance of the DC-DC converter for battery charger, a method is proposed. First, the structure of the system is presented. Second, an LC filter is compared to an LCLC filter in terms of the response characteristics and size. Third, the small-signal model of a bidirectional DC-DC converter using a state-space averaging method and the required transfer functions are introduced. Next, the frequency characteristics of the converter are discussed. Finally, the simulation and experimental results are analyzed to verify the proposed state space of the bidirectional converter.

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

Power Consumption Analysis and Minimization of Electronic Shelf Label System (전자가격표시시스템의 소모전력 분석 및 최소화 방안)

  • Woo, Rinara;Kim, Jungjoon;Seo, Dae-Wha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Energy consumption of sensor nodes is minimized because it has limited energy generator in wireless sensor network. Electronic shelf label system is one of application fields using wireless sensor networks. Battery size of small apparatus for displaying price is restricted. Therefore its current consumption have to be minimized. Furthermore the method for minimization of peak current would be considered because life cycle of coin battery used to display or RF is vulnerable to intensity of drain current. In this paper, we analyze current consumption pattern of low-power electronic shelf label system. Then we propose the method for minimization of current consumption by modification of software and hardware. Current consumption of the system using proposed method are approximately 15 to 20 percent lower than existing system and the life cycle of the system is approximately 10 percent higher than existing system.