• Title/Summary/Keyword: Battery size

Search Result 492, Processing Time 0.03 seconds

Development of a miniaturized FM transmitter with low power

  • Ryu, Jeong-Tak;Kim, In-Gyeong;Kim, Yeon-Bo;Kim, Jong-Pil
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.629-633
    • /
    • 2008
  • Recently, there has been great interest in the application of short-range wireless communication system. In this paper, the miniaturized FM transmitter with low power is developed, and laboratory tests have been carried out. The FM transmitter uses FM radio waves to send sound from any system (MP3, PMP, PDA, MP3 Phone et.) to any nearby radio or stereo system. The transmitter is designed with $2.6cm{\times}2.6cm{\times}2.6cm$ system size. The operating voltage is 3.7 V and used the built-in storage battery. The system can use continuously during 7 hour with once charging. The transmission frequency can select one of 88.1 MHz, 88.3 MHz, or 88.5 MHz in compliance with utility condition. The channel separation ability is 40 dB. The operating temperature is $-10{\sim}+85^{\circ}C$, which use in the industry environment. Consequently, this system sis used conveniently with short distance information transmitter system at the industry field.

  • PDF

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Characteristics of Wireless Power Transmission applying the superconducting coil (초전도 코일을 적용한 WPT 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.762-766
    • /
    • 2013
  • Interest in Wireless Power Transmission (WPT) technology has been increasing worldwide recently. This trend is proved by commercialized products such as electric toothbrush, wireless razor, and wireless charger for mobile phone battery. Studies for enhancing the applicability of the technology have been continuously conducted. Currently the WPT technology is based on the technologies using microwave, inductively coupling, and magnetic resonance. In the meantime, development of the microwave-based WPT faces difficulty due to health hazards involved in the technology, and application of the WPT technology using inductively coupling is restricted by area due to the problem of transmission length. In comparison, the WPT technology using magnetic resonance draws attention in terms of efficiency and transmission length. In this study, the sending coil based on the WPT technology using magnetic resonance system was replaced with an HTS coil to enhance transmission efficiency. Since the HTS coil has a zero resistance, power transmission loss can be minimized. At the same time, size of the current density could be increased to 100 times or more than typical coils. In addition, through impedance matching of LC device, maximal resonance properties were induced and consequently, frequency selection quality characteristics or Q was enhanced. As a result, the WPT type using the HTS coil showed a longer transmission length and better transmission efficiency compared with the WPT type using typical coils.

Impact of Electric Vehicle Penetration-Based Charging Demand on Load Profile

  • Park, Woo-Jae;Song, Kyung-Bin;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.244-251
    • /
    • 2013
  • This paper presents a study the change of the load profile on the power system by the charging impact of electric vehicles (EVs) in 2020. The impact of charging EVs on the load demand is determined not only by the number of EVs in usage pattern, but also by the number of EVs being charged at once. The charging load is determined on an hourly basis using the number of the EVs based on different scenarios considering battery size, model, the use of vehicles, charging at home or work, and the method of charging, which is either fast or slow. Focusing on the impact of future load profile in Korea with EVs reaching up 10 and 20 percentage, increased power demand by EVs charging is analyzed. Also, this paper analyzes the impact of a time-of-use (TOU) tariff system on the charging of EVs in Korea. The results demonstrate how the penetration of EVs increases the load profile and decreases charging demand by TOU tariff system on the future power system.

Implement of Power Density for AC Generator Using a Fill Factor of Slot (슬롯의 점적률을 고려한 교류발전기의 출력밀도 개선)

  • Lee, Jae-won;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.275-278
    • /
    • 2017
  • The automotive society is facing many challenges in minimizing the energy loss to improve performance and fuel economy of the vehicle. This work "Implement of Power Density for AC Generator Using a Fill Factor of Slot" is a research in Electrical Generator design, to improve power density of Alternator used in conventional IC engine powered vehicles. The power density of the alternator directly influences the fuel economy and performance in the motor vehicle. The size and weight of the alternator can be reduced by suitably designing power density of alternator. The simulation model of alternator is made and tested for different stator space factor using solid and round conductor to demonstrate the improvement in the output performance and efficiency. The result shows that there is an average 10% improvement in efficiency of alternator by using the solid conductor. The energy balance of the system also increased SOC in the base model.

  • PDF

Differential type Single-stage Isolated AC-DC Converter with AC Power Decoupling for EV Battery Charger

  • ;Kim, Hyeong-Jin;Kim, Jae-Hun;;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.198-200
    • /
    • 2018
  • In this paper a single-stage single-phase differential type isolated AC-DC converter is proposed. This converter eliminates the requirement to use bulky electrolytic capacitor from the system and at the same time provides DC charging by employing the AC Power Decoupling waveform control method. All the switches of the converter achieve ZVS turn on during half line cycle and all diodes achieve ZCS turn off during entire line cycle. A conventional controller is implemented for PFC control and output regulation, whereas a power decoupling controller is added to compensate $2^{nd}$ harmonic ripple power. In addition, an interleaving technique is applied to increase the power range of the converter and reduce the input inductor size. In the end simulation verification is performed and results are obtained for 6.6KW.

  • PDF

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

Development of Smart Phone Application With Spectrometer for u-Health Service (u-Health 서비스를 위한 스마트폰용 스펙트럼 측정 시스템 개발)

  • Kim, Dong-Su;Lee, Seo-Joon;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.261-269
    • /
    • 2013
  • Ubiquitous healthcare is a recent technology and a new methodology of medical diagnosis and medical care. However, in order for u-Healthcare service to become a general technology, there are some technological barriers(mobility, minimization, battery consumption etc) to overcome. In this paper, we developed a spectrum analysis system for smart phones. The results showed that compared to other solutions, our's were not only small in size but also almost the same in performance(reproducibility comparison experiments, Spectrum, Calibration Curve and Prediction). Therefore, the proposed solution is expected to be widely used in u-Health area.