• Title/Summary/Keyword: Battery size

Search Result 490, Processing Time 0.028 seconds

An Experimental study on the human's physiological in Smart Textile Materials by Using Medical Infrared Thermo graphic Imaging (적외선 체열 영상 진단법을 이용한 스마트 섬유소재와 휴대폰 통화량에 따른 인체 생리반응 연구)

  • Lee Tae-il;Lee Su-jeong;Lee Kyung-mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.918-925
    • /
    • 2005
  • The following are the results from the infrared body temperature image test to verify the changes in facial temperature according to call duration with a cellular phone. As for the body temperatures, it appears to be the mean value at the upper central point of phone's battery among 7 different points that are measured, and to be the highest at srernocleido-mastoid and scapular trapezius muscle triangle zone$(34.25^{\circ}C\; and\;34.05^{\circ}C\;each)$. The changes of body temperature according to the time duration shows that the body temperature rises according to the length of phone use because of the heat emitted from the battery. As for the temperature changes according to blocking materials, the one without processing appears to be higher in the mean temperature compared to the others that are processed, NSS(Nano Silver Silk) and NSG(Nano Silver Silk Gold) appear to be the lowest in the temperature to show the best blocking property. As for the temperature changes according to measuring points, it appears to be the highest at P4, P5 with all materials, and one with NSG to be the lowest at Pl, P2, P3, and one with NSS to be the lowest at P3, P4, P5, P6, which is due to the thermal conduction of Au and Ag. And the mean temperature at each point appears to be different according to the materials. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Eco-friendly Smart Outdoor Jacket Production and Usability Evaluation (환경 친화적 스마트 아웃도어 재킷제작 및 사용성 평가)

  • Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.6
    • /
    • pp.845-856
    • /
    • 2014
  • This study focused on the production and usability evaluation of smart outdoor jackets that are designed to provide convenience to middle-aged people by embedding devices for lighting and location tracing. The results were as follows. 1. Jacket power supplier was a assembled system composed of battery, charger, controller and switch. A solar cell was attached on the upper arm, and a wire type EL on the center line of a raglan sleeve along with a GPS on the left sleeve with a transparent vinyl pocket. The total weight of the jacket embedded with devices was 385-520g. 2. Operation of function, activity, acceptability, safety, convenience for device use, appearance, practical maintenance were selected based on an analysis of evaluation criteria of previous smart wear research. Criteria were narrowed to three major categories of satisfaction, appearance and maintenance. 3. Use satisfaction criterion consisted of wearable device functionality and physical, psychological use convenience. The evaluation indicated actual functionality. EL functions were especially effective and necessary. Convenience of use showed that a smart jacket was thought to be safe and the size was moderate regardless of age and gender. Outer appearance was satisfactory and respondents praised the color. The practical maintenance evaluation indicated that there was no challenge in doing the laundry since the solar battery and GPS were detachable. The practical use of smart outdoor jackets confirmed by fabric that was washable and dried quickly.

The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode (Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰)

  • Im, Jung-Bin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 2011
  • [ $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ ]cathode material for lithium secondary battery is obtained using co-precipitation method. To determine the optimal metal solution concentration value, the CSTR coprecipitation was carried out at various concentration values(1-2 mol/L). The surface morphology of coated samples was characterization by SEM(scanning electron microscope) and XRD (X-Ray Diffraction)analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the concentration of metal solution. such data is very helpful in determining the optimal content of metal solution concentration to enhancing electrochemical property by adjusting powder size distribution and crystal structure.

The Charge-Discharge Performance of $Li/MoS_2$ Battery with liquid Electrolyte of Tetra(ethylene glycol] Dimethyl Ether[TEGDME] (TEGDME 액체 전해질을 사용한 $Li/MoS_2$ 전지의 충.방전 특성)

  • Kwon, Jeong-Hui;Ryu, Ho-Suk;Kim, Ki-Won;Ahn, Jou-Hyeon;Jeong, Yong-Su;Lee, Kun-Hwan;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.238-244
    • /
    • 2009
  • We investigated the electrochemical properties of lithium/molybdenum sulfide(Li/MoS$_2$) using tetra (ethylene glycol) dimethyl ether(TEGDME) electrolyte. The Li/TEGDME/MoS$_2$ cell showed the first discharge capacity of 288mAhg$^{-1}$. From the XRD, SEM results of the MOS$_2$ electrode in various cut-off voltage during charge-discharge process, MoS$_2$ partly changed into Li$_2$S and Mo during discharge and Li$_2$S partly recovered into MOS$_2$ and Li during charge. Full charged MOS$_2$ electrode showed lump shape of big size, which might be related to agglomerate of MoS$_2$ particles. Therefore, the degradation might be related to decrease of active material for electrochemical reaction by agglomeration of MOS$_2$.

The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions (다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Finding Smartphone's Factors which Affect Satisfaction or Dissatisfaction based on KANO Model (KANO 모델을 활용한 스마트폰의 만족 및 불만족 요인 분석)

  • Lee, Sang-Gun;Lee, Sin-Seok;Kang, Ju-Young
    • The Journal of Information Systems
    • /
    • v.20 no.3
    • /
    • pp.257-277
    • /
    • 2011
  • The current study categorizes factors of smartphone into three, using KANO model: attractive factors which cause only product satisfaction, must-be factors for dissatisfaction, and one-dimensional factors for both. Based on it, it presents a new model for the effects that smartphone factors have on satisfaction or dissatisfaction. The purpose is to theoretically explain that smartphone factors on which companies and users place a high value can actually affect satisfaction or dissatisfaction. After choosing 15 factors out of 25 which had been selected through literature study, these were divided into attractive, must-be, and one-dimensional ones. 93 out of 109 questionnaires returned were used for analysis. After frequency analysis using SPSS were conducted on the surveys, the factors were grouped, based on KANO table. The grouping results are as follows. Attractive factors include 'expansion slots for external memory, battery desorption, brand awareness, mobile banking and internet telephony'. Must-be ones include 'multi-touch, information security, entertainment, information retrieval, location based service and SNS. Finally, 'screen visibility, size of internal memory, the amount of internal memory, battery life, and response to after-sales service' are classified as one-dimensional factors. A critical finding of this paper is that since the results are different depending on the operating system of smartphones, it must be taken into consideration in studies on smartphones. The wide and rapid spread of smartphones has changed people's lifestyle as well as business environment, which forces companies to compete with each other to adapt to the changed circumstances. In this competitive system, studies on smartphone factors of satisfaction and dissatisfaction are essential for firms to establish a new strategy. From this point of view, the present paper is expected to be a basic material for enterprises not only to develop goods and services that maximize customer satisfaction and minimize dissatisfaction, but also to establish the future business strategy.

Preparation of LiCoO$_2$from Used Lithium Ion Battery by Hydrometallurgical Processes

  • Lee, Churl-Kyoung;Rhee, Kang-In;Yang, Dong-Hyo;Yu, Hyo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.240-244
    • /
    • 2001
  • Recycling process involving mechanical, thermal, hydrometallurgical, and sol-gel step has been applied to recover cobalt and lithium from spent lithium ion batteries and to synthesize LiCoO$_2$from leach liquor as cathodic active materials. Electrode materials containing lithium and cobalt could be concentrated with 2-step thermal and mechanical treatment. Leaching behaviors of the lithium and cobalt in nitric acid media was investigated in terms of reaction variables. Hydrogen peroxide in 1 M HNO$_3$solution turned out to be an effective reducing agent by enhancing the leaching efficiency. O f many possible processes to produce LiCoO$_2$, the amorphous citrate precursor process (ACP) has been applied to synthesize powders with a large specific surface area and an exact stoichiometry. After leaching used LiCoO$_2$with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.1 by adding a fresh LiNO$_3$solution. Then, 1 M citric acid solution at a 100% stoichiometry was also added to prepare a gelatinous precursor. When the precursor was calcined at 95$0^{\circ}C$ for 24 hr, purely crystalline LiCoO$_2$was successfully obtained. The particle size and specific surface area of the resulting crystalline powders were 20 пm and 30 $\textrm{cm}^2$/g, respectively The LiCoO$_2$powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

  • PDF

Automotive HID Ballast System Using Planar Transformer (평면 변압기를 이용한 자동차용 고압방전등 안정기 시스템)

  • Lee, Jae-Hak
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • This paper presents the control system of high-efficiency automotive 35W metal-halide lamp ballast using the new control method and planar transformer. In this paper, the electronic ballast is designed so that digital control method by microcontroller can be applied to the electronic ballast for the lamp requirement and peripheral environment in order that metal-halide lamp, which has the complicated transient features, is to be applied to the automobile even if it has superior features in brightness, color rendering, light efficiency, and lifespan compared to the conventional halogen lamp. Also, the efficiency increase of the ballast is devised by being varied the switching frequency of Flyback Converter following the battery input voltage of the automobile. Being designed for high-frequency switching transformer of converter in planar form, reduction of loss, weight, overall size are realized and efficient power control in the automobile that had the limited energy and the limited space of battery is devised. The results of the proposed system is verified through various experiment results.

Energy-efficient Channel Allocation MAC for Wearable WBANs (웨어러블 WBANs를 위한 에너지 효율적인 채널할당 MAC)

  • Lee, Jung-Jae;Kim, In-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1135-1140
    • /
    • 2016
  • The main challenge in designing wearable WBANs is to guarantee the balance of QoS demands in the network with the low power constraints of limited battery powered nodes. Low power devices implanted in or attached to the body should be designed to meet minimum energy requirements due to their limited battery life and be small in size to be easily wearable. In this paper, we propose a method for optimizing channel allocation method that is compatible with the IEEE 802.15.6 standard, enables the maximum amount of power charge at idle, guarantees the QoS of a WBAN, and provides the reliable date transmission between nodes and hubs in the network. Our extensive simulations will show that the method we propose not only maximizes the QoS in packet transmission but also improves the level of energy efficiency.