• Title/Summary/Keyword: Battery power modules

Search Result 70, Processing Time 0.032 seconds

Fuzzy LP Based Power Network Peak Shaving Algorithm (퍼지 LP 기반 전력망 Peak Shaving 알고리즘)

  • Ohn, Sungmin;Kim, Jung-Su;Song, Hwachang;Chang, Byunghoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.754-760
    • /
    • 2012
  • This paper describes peak shaving algorithms as long-term cycle scheduling in the power management system (PMS) for MW-scale battery energy storage systems (BESS). The purpose of PMS is basically to manage the input and output power from battery modules placed in the systems. Assuming that an one-day ahead load curve is provided, off-line peak shaving algorithms can be employed, but applying the results of the off-line algorithm may result in the difference in the real-time performance because there is uncertainty in the provided load curve. This paper adopts fuzzy based LP (linear programming) algorithms for describing the peak shaving algorithm in PMS and discusses a solution technique and real-time operation strategies using the solution.

Band-Gap Reference Voltage Control Strategy for Fuel Cell Hybrid Vehicle

  • Kim, Young-Do;Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.163-165
    • /
    • 2007
  • Generally, the power management system of fuel cell hybrid vehicle (FCHV) requires a unidirectional DC/DC converter for the fuel cell (FC) and a bidirectional DC/DC converter for the battery. To manage the various power flows between these modules with a simple way, a new band-gap reference voltage (BGRV) control strategy is proposed. The proposed method easily controls this variable power flow by setting the reference voltages of each converter to slightly different values, and it can be simply implemented by commercial controllers as well. The operational principle of proposed method is presented and verified experimentally by the 400W prototype.

  • PDF

A Study on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply (독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구)

  • Kim, Ki-Young;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • Renewable energy has been increasingly used and widely acclaimed as one of the solutions to rampant environmental problems. Among numerous kinds of renewable sources, the penetration rate of the PV system is relatively higher than that of others due to ease of installation. However, one disadvantage of the PV system is its dependence on weather condition. The PV system is especially critical when it is used for standalone systems because it cannot operate when the power generated from a PV module is not enough. Therefore, PV systems are often used with an energy storage system, such as batteries, to store backup energy when the weather condition is insufficient to supply power to the system. Blackout time can be reduced by increasing the size of the energy storage system, but it is a trade-off with system cost. In this work, optimal sizing of a standalone PV system is proposed to supply power to the system without blackout. The sizing of PV modules and batteries is performed by a simulation based on actual irradiation data collected during the past five years. The Life cycle costing of each system is evaluated to determine an optimal set of PV modules and batteries among several different combinations. The standalone PV system designed by the proposed method can supply power to the system with no interruption as long as the weather condition is similar to those of the past five years.

Operation Method of Power Supply System for Eco-friendly Movable-weir Based on Natural Energy Sources (자연에너지를 이용한 친환경 가동보용 전원공급시스템의 운용방안)

  • Kwon, Pil-June;Lee, Hu-Dong;Tae, Dong-Hyun;Park, Ji-Hyun;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.601-610
    • /
    • 2020
  • Recently, damage caused by drought is becoming worse and worse due to the global climate change. To overcome these problems, movable-weir to control the water level has been installed instead of a fixed-weir made from concrete. On the other hand, it is difficult to operate an existing moveable-weir because of the high cost of facility management and manpower consumption. In addition, because most moveable-weirs are installed in power systems, the operating cost and the cost of connection for power systems increase when they are located in remote areas. Therefore, this paper proposes an optimal design algorithm and the evaluation algorithm of the SOC (state of charge) of a lithium-ion battery to replace an existing power supply with eco-friendly movable-power with a power supply system using PV modules and lithium-ion batteries. In addition, this study modeled a 50kW power supply system of a movable-weir using PSCAD/EMTDC S/W. The simulation results confirmed that the proposed algorithm has stable operation characteristics in an independent operation mode and interconnection operation mode and that there is the possibility of commercialization with a benefits evaluation of the eco-friendly power supply system of a movable-weir.

A Modularized Charge Equalizer Using the Magnetizing Energy of the Multi-Winding Transformer (다권선 변압기의 자화 에너지를 이용한 모듈화 전하 균일 장치)

  • Lim, Chang-Soon;Hyun, Dong-Seok;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.393-400
    • /
    • 2012
  • The modularized equalizers normally use additional components among the modules in the long series-connected lithium-ion battery string. In these approaches, the overall systems are heavy, bulky, and high-priced. Furthermore, the losses related to additional components decrease the system efficiency. To avoid these problems, a modularized equalizer, which has no additional components among the modules, is required. This paper proposes a novel control scheme using the magnetizing energy of the multi-winding transformer for the module equalization. In this scheme, the high duty cycle is applied to the module where the voltage is higher than the reference voltage and the low duty cycle is applied to the module where the voltage is lower than the reference voltage. Due to the different duty cycle, more electric charges are transferred from high voltage module to the low voltage module during the turn-off switching interval. Using the proposed control scheme, the equalizer system does not suffer from the size, cost, and loss related to the modularization. The experimental results are provided to verify the effectiveness of the proposed modularized equalizer.

The design of capacitor-based self-powered artificial neural networks devices (커패시터 기반 자가발전 인공 신경망 디바이스 설계)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

A Study of the Terminal Developement for Distribution Automation System (배전 자동화용 단말장치 기술 개발및 전원 구성에 관한 연구)

  • Kye, Moon-Ho;Kim, Jong-Soo;Jung, Je-Wook;Nam, Hyo-Sung;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.902-904
    • /
    • 1993
  • This paper contains the terminal developement for the feeder remote unit in Korea Distribution Automation System. This terminal unit has serval functions in order to do feeder auotmation as following, the open/close controls and gathering status informations of switchgears, getting line currents and voltages, distribution fault. So FRU has four modules to do those functions-Logic Controller, Relay Controller, Data Acquisition, Display, Power Supply etc. The FRU should be on allays, so AC power is supplied before & behind the switchgear. Power Supply is made up with AC/DC, DC/DC, Battery and/or SOLAR CELLS & CONTROLLER. It is important for the supply to protect against some Surges, because surges are happened so many times. Surge test is fellowing the standard IEC 801-5 or IEEE 587.

  • PDF

The grid-connected bidirectional PCS technology of the ESS (에너지 저장장치의 계통 연계형 양방향 PCS 기술)

  • Ko, Bong-Woon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1280-1287
    • /
    • 2019
  • Grid-connected bidirectional PCS(Power Conditioning System) technology is a technology for implementing distributed renewable energy smart grid. And it is always charged by using power collected from solar modules and commercial grid power among vast smart grid systems, and stored when needed.It is a hybrid energy storage device that allows power to be released into the low voltage system. To this end, a PV input power converter with MPPT function, a bidirectional power converter for battery charging and discharging, and a DC Link input are output to a 3 phase 380V AC system, and if nessary, the bidirectional DC/DC converter We designed and developed a PCS with three power converter structures composed of inverters that perform battery charging. Currently, this system is applied to the site of Jeju, which is vulnerable to power outages and fire accidents.

Low Power Security Architecture for the Internet of Things (사물인터넷을 위한 저전력 보안 아키텍쳐)

  • Yun, Sun-woo;Park, Na-eun;Lee, Il-gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.199-201
    • /
    • 2021
  • The Internet of Things (IoT) is a technology that can organically connect people and things without time and space constraints by using communication network technology and sensors, and transmit and receive data in real time. The IoT used in all industrial fields has limitations in terms of storage allocation, such as device size, memory capacity, and data transmission performance, so it is important to manage power consumption to effectively utilize the limited battery capacity. In the prior research, there is a problem in that security is deteriorated instead of improving power efficiency by lightening the security algorithm of the encryption module. In this study, we proposes a low-power security architecture that can utilize high-performance security algorithms in the IoT environment. This can provide high security and power efficiency by using relatively complex security modules in low-power environments by executing security modules only when threat detection is required based on inspection results.

  • PDF

Design of Reassembly Unit Modular Wearable Device (단위 모듈 기반의 재조립 가능한 웨어러블 디바이스 구조 설계)

  • Lee, Geo-Yun;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.338-346
    • /
    • 2016
  • Wearable Device has various constraint about battery power consumption, size, weight, etc, because the devices is worn and operated by person and provide services. So, if a device includes too many functions, it dose not satisfies the constraint and lose price competitiveness due to become expensive. Therefore we suggest that make reassembly Unit Modular Device witch has common used functions in wearable devices and user can receive various services to reassemble Unit Modules. It is comprised of frames and modules. Each module has various functions. Each frames help module to communicate each modules. To realize this device, we design to guarantee each services to use necessary modules, to give priority to modules depending on the important of the task, to set that does not use to low energy mode.