• Title/Summary/Keyword: Battery management systems

Search Result 162, Processing Time 0.024 seconds

Design and Implementation of Low-Power Technique based on Monitoring Workload on Real-Time Operating Systems (실시간 운영체제에서 작업량 관찰에 기반한 저전력 기법의 설계 및 구현)

  • Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.69-78
    • /
    • 2007
  • In recent years, embedded mobile systems have been expanding their application domains from embedded portable devices which only execute a specialized application such as MP3 player or digital camcoder to digital convergence devices which execute more complicated applications converged various functionalities such as video and audio play, digital dictionary, DMB, games, phone, etc. As it requires the increasing hardware performance such as more faster CPU and more larger RAM, display, disk size, it has brought about a corresponding increase in power consumption. However, coupled with relatively small gains in battery capacity over recent years, the importance of software architecture including intelligent power management has become paramount. In this paper, we have ported UbiFOSTM with energy saving techniques on the ARM9-based MBA2440 platform. For energy savings, we adapted the dynamic power management and the device power management schemes based on monitoring workload. Experimental results with some well-known applications show that proposed low power technique could save energy up to 24 %.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

A Low Power Parking Management System for Intelligent Building (인텔리전트 빌딩을 위한 저 전력 주차관리 시스템)

  • Lee, Chang-Ki;Im, Hyung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1479-1485
    • /
    • 2012
  • The parking management system can increase driver's convenience with detailed parking information service in the parking lot. At the same time, parking management system consumes non-negligible electrical energy with large amount of sensors, displays and control modules. With the increase in the demand for green and sustainable building design all over the world, it becomes a meaningful issue for parking management system to reduce operating power. This paper presents the preliminary design and estimated results of a parking management system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on pre-developed wireless parking detectors, Park Tile and Park Disk. The system has a number of parking space detectors, vehicle count detectors, information displays, guidance terminals and other control units. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. The estimated operating power was 0.93KW per parking-slot, which is 20% of traditional systems. The estimated annual maintenance cost was 18% of traditional systems.

Increasing the Lifetime of Ad Hoc Networks Using Hierarchical Cluster-based Power Management

  • Wu, Tin-Yu;Kuo, Kai-Hua;Cheng, Hua-Pu;Ding, Jen-Wen;Lee, Wei-Tsong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.5-23
    • /
    • 2011
  • One inevitable problem in Ad Hoc networks is the limited battery capacity, which explains why portable devices might shut down suddenly when the power of hardware is depleted. Hence, how to decrease the power consumption is an important issue in ad hoc networks. With the development of wireless technology, mobile devices can transmit voices, surf the Internet, download entertaining stuffs, and even support some P2P applications, like sharing real-time streaming. In order to keep the quality stable, the transmission must be continuous and it is thus necessary to select some managers to coordinate all nodes in a P2P community. In addition to assigning jobs to the staffs (children) when needed, these managers (ancestors) are able to reappoint jobs in advance when employees retire. This paper proposed a mechanism called Cluster-based Power Management (CPM) to stabilize the transmissions and increase Time to Live (TTL) of mobile hosts. In our new proposed method, we establish the clusters according to every node's joining order and capability, and adjust their sleep time dynamically through three different mathematical models. Our simulation results reveal that this proposed scheme not only reduces the power consumption efficiently, but also increases the total TTLs evidently.

Dynamic Voltage and Frequency Scaling based on Buffer Memory Access Information (버퍼 메모리 접근 정보를 활용한 동적 전압 주파수 변환 기법)

  • Kwak, Jong-Wook;Kim, Ju-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As processor platforms are continuously moving toward wireless mobile systems, embedded mobile processors are expected to perform more and more powerful, and therefore the development of an efficient power management algorithm for these battery-operated mobile and handheld systems has become a critical challenge. It is well known that a memory system is a main performance limiter in the processor point of view. Although many DVFS studies have been considered for the efficient utilization of limited battery resources, recent works do not explicitly show the interaction between the processor and the memory. In this research, to properly reflect short/long-term memory access patterns of the embedded workloads in wireless mobile processors, we propose a memory buffer utilization as a new index of DVFS level prediction. The simulation results show that our solution provides 5.86% energy saving compared to the existing DVFS policy in case of memory intensive applications, and it provides 3.60% energy saving on average.

Design of a High-Resolution Integrating Sigma-Delta ADC for Battery Capacity Measurement (배터리 용량측정을 위한 고해상도 Integrating Sigma-Delta ADC 설계)

  • Park, Chul-Kyu;Jang, Ki-Chang;Woo, Sun-Sik;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Recently, with mobile devices increasing, as a variety of multimedia functions are needed, battery life is decreased. Accordingly the methods for extending the battery life has been proposed. In order to implement these methods, we have to know exactly the status of the battery, so we need a high resolution analog to digital converter(ADC). In case of the existing integrating sigma-delta ADC, it have not convert reset-time conversion cycle to function of resolution. Because of this reason, all digital values corresponding to the all number of bits will not be able to be expressed. To compensated this drawback, this paper propose that all digital values corresponding to the number of bits can be expressed without having to convert reset-time additional conversion cycle to function of resolution by using a up-down counter. The proposed circuit achieves improved SNDR compared to conventional converters simulation result. Also, this was designed for low power suitable for battery management systems and fabricated in 0.35um process.

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

Cluster-Based Mobile Sink Location Management Scheme for Solar-Powered Wireless Sensor Networks

  • Oh, Eomji;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a sink-location management and data-routing scheme to effectively support the mobile sink in solar-powered WSN. Battery-based wireless sensor networks (WSNs) have a limited lifetime due to their limited energy, but solar energy-based WSNs can be supplied with energy periodically and can operate forever. On the other hand, introduction of mobile sink in WSNs can solve some energy unbalance problem between sink-neighboring nodes and outer nodes which is one of the major challenges in WSNs. However, there is a problem that additional energy should be consumed to notify each sensor node of the location of the randomly moving mobile sink. In the proposed scheme, one of the nodes that harvests enough energy in each cluster are selected as the cluster head, and the location information of the mobile sink is shared only among the cluster heads, thereby reducing the location management overhead. In addition, the overhead for setting the routing path can be removed by transferring data in the opposite direction to the path where the sink-position information is transferred among the heads. Lastly, the access node is introduced to transmit data to the sink more reliably when the sink moves frequently.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Balancing Energy and Memory Consumption for Lifetime Increase of Wireless Sensor Network (무선 센서 네트워크의 수명 연장을 위한 에너지와 메모리의 균형 있는 소모 방법)

  • Kim, Tae-Rim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.361-367
    • /
    • 2014
  • This paper introduces balancing energy and memory consumption for lifetime increase of wireless sensor network. In cluster-based wireless sensor network, sensor nodes adjacent of cluster heads have a tendency to deplete their own battery energy and cluster heads occupy memory space significantly. If the nodes close to region where events occur frequently consume their energy and memory fully, network might be destroyed even though most of nodes are still alive. Therefore, it needs to balance network energy and memory with consideration of event occurrence probability so that network lifetime is increased. We show a method of balancing wireless sensor network energy and memory to organize cluster groups and elect cluster heads in terms of event occurrence probability.