• Title/Summary/Keyword: Battery energy storage system, BESS

Search Result 144, Processing Time 0.024 seconds

Modeling & Operating Algorithm of Hybrid Generation System with PMSG Wind Turbine, Diesel Generator and BESS (영구자석형 풍력-디젤-BESS 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구)

  • Oh, Joon-Seok;Jeong, Ui-Yong;Park, Jong-Ho;Park, Min-Su;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.724-729
    • /
    • 2016
  • Nowadays high-cost energy storage system using flywheel or secondary battery is applying to hybrid generation system with WT(Wind Turbine) and diesel generator in island areas for stable operation. This paper proposes an operating algorithm and modeling method of the hybrid generation system that can operate for variable wind speed and load, which is composed of energy storage system, variable-speed PMSG(Permanent Magnet Synchronous Generator) WT and diesel generator applied in island areas. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for load and wind speed changes. Also, the modeling method is proposed for variable speed PMSG WT, diesel generator and BESS(Battery Energy Storage System). The proposed operating algorithm and modeling method were applied to a typical island area. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Droop Control Method for Circulating Current Reduction in Parallel Operation of BESS (BESS의 병렬운전 시 발생되는 순환 전류 저감을 위한 드룹 제어 기법)

  • Sin, Eun-Suk;Kim, Hyun-Jun;Yang, Won-Mo;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.708-717
    • /
    • 2015
  • This paper proposes a new reduction scheme of circulating current when two units of BESS (Battery Energy Storage System) are operated in parallel with conventional droop control. In case of using conventional droop, the terminal voltage of each BESS are not equal due to the unequal line impedance, which causes the circulating current. The operation performance of BESS is critically dependant on the circulating current because it increases system losses which causes the increasement of required system rating. This paper introduces a new reduction scheme of circulating current in which the terminal voltage difference of each BESS is compensated by adding feed-forward path of line voltage drop to the droop control. The feasibility of proposed scheme was first verified by computer simulations with PSCAD/EMTDC software. After then a hardware prototype with 5kW rating was built in the lab and many experiments were carried out. The experimental results were compared with the simulation results to confirm the feasibility of proposed scheme. Two parallel operating BESS with proposed scheme shows more accurate performance to suppress the circulating current than those with the conventional droop control.

Control of Microgrid System with Super-capacitor and Battery (수퍼 커패시터와 배터리를 이용한 마이크로그리드 시스템의 제어)

  • Choi, Yongoh;Lee, Eonsuck;Chung, Sekyo;Song, Yujin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.242-243
    • /
    • 2013
  • This paper presents a voltage and frequency regulation of a Micro-grid using a Battery energy storage system (BESS) and super-capacitor (SPC). The control methods for the both BESS and SPC are proposed to improve the regulation performance and battery life span. The simulation results using the PSCAD/EMTDC are provided to show the effectiveness of the proposed control.

  • PDF

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon;Lee, Kui-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2237-2246
    • /
    • 2017
  • A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

A Study on Analysis Model for Economic Evaluation of Battery Energy Storage System (전지전력저장시스템의 경제성 평가를 위한 분석모델의 연구)

  • Kim, Eung-Sang;Kim, Ho-Young;Ko, Yo;Rim, Seong-Jeong;Kim, Jae-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 1996
  • The Battery Energy Storage System(BESS) can help the load factor improved by discharging the battery energy when the load is peak in the daytime. BESS has the advantages such as spinning reserve, control of voltage and frequency, deferment of investment for generation and transmission capacity construction, and reliability improvement of utility power service. To develop BESS and to apply it to Korea's power system, economic evaluation must be preceded. In this paper, we analyzed the investment costs, by modifying and complementing the Sysplan Model, through the economic assessment.

  • PDF

Seamless Transfer Method of BESS Connected by Engine Generator (엔진발전기와 연계된 BESS의 무순단 모드 전환 기법)

  • Shin, Eun-Suk;Kim, Hyun-Jun;Kim, Kyo-Min;Yu, Seung-Yeong;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1709-1717
    • /
    • 2015
  • In remote islands PV (Photo Voltaic) panel with BESS (Battery Energy Storage System) supplies electric power to the customers in parallel operation with EG (Engine Generator) to save fuel consumption and to mitigate environmental load. BESS operates in voltage control mode when it supplies power to the load alone, while it operates in current control mode when it supplies power to the load in parallel with EG. This paper proposes a smooth mode change scheme from current control to voltage control of BESS by adding proper initial value to the integral part of voltage control, and a smooth mode change scheme from voltage control to current control by tracking the EG output voltage to the BESS output voltage using PLL (Phase-Locked Loop). The feasibility of proposed schemes was verified through computer simulations with PSCAD/EMTDC, and the feasibility of actual hardware system was verified by experiments with scaled prototype. It was confirmed that the proposed schemes offer a seamless operation in the stand-alone power system in remote islands.

A Study on the Battery Storage Volume Optimization in case of DR Participation for the Minimization of the Customer's Investment Cost (BESS의 DR(Demand Response) 적용 시 수용가의 투자비 최소화를 위한 적정용량산출방법)

  • Yang, Seung-Kwon;Kim, Dae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • The BESS(Battery Energy Storage System) is an useful device for load leveling, but the high cost, installation space and safety issues are the main barriers for supplying it widely. The important factor in supplying BESS to customers successfully is the payback period. As most of the H/W cost factors are uncontrollable, the optimization of storage volume can be useful factor in improving payback period. In order to obtain optimized BESS volume, the load factor, demand ratio, peak shaving ratio, electric rates and benefits from DR participation of customer should be analyzed. In this paper, we could verify the peak cutting capability and cost effectiveness under the some proposed conditions and changing value of PCS and battery based on the customers data after volume optimization process was applied, and we can identified the saturation point of load factor and shortening of customer's payback period.

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.

BESS Application to Voltage Compensation of AC Railway System based on 3ϕ/1ϕ BTB Voltage Source Converter (3상/단상 BTB 전압형 컨버터 기반의 전기철도 급전 시스템의 전압제어 향상을 위한 BESS 적용)

  • Yoo, Hyeong-Jun;Shin, Seungkwon;Jung, Hosung;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1588-1593
    • /
    • 2014
  • The scott transformer changes three-phase power to two single-phase power. However, this method causes unbalance and fluctuation of voltage by the change of electric railload. Recently, the AC railway system based on $3{\Phi}/1{\Phi}$ back-to-back (BTB) voltage source converter (VSC) has been proposed to solve these problems. Meanwhile, battery energy storage system (BESS) is used to compensate voltage instantaneously in power system. In this paper, BESS application to the AC railway system based on $3{\Phi}/1{\Phi}$ BTB VSC is suggested to compensate voltage instantaneously. The application effect is shown through simulation using MATLAB/SIMULINK.

Economic Assessment and Introduction Prospect of BESS (전력저장전지시스템(BESS)의 도입전망과 경제성 분석)

  • Eom, Y.C.;Kim, H.Y.;Kim, J.E.;Rho, D.S.;Kim, E.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.393-396
    • /
    • 1991
  • The load factor is continuously decreasing with the increase of the daytime power demand so that the load levelling is required. Since the pumped storage power plant for the load levelling has some problems, new storage techniques such as the battery energy storage system (BESS) had been developed in the early 1980s. The MW BESS had been already interconnected to power system in the developed countries, while the 20KW BESS was developed and is being operated by KERI and KEPCO in our country, the development project of MW BESS is being persued now. Then, it is important to evaluate the economics and prospect of BESS. This paper presents the economic target and introduction prospect of BESS in korea.

  • PDF