• 제목/요약/키워드: Battery energy storage

검색결과 758건 처리시간 0.023초

Ti1-XZrxVNi 및 Ti1-XZrxV0.5Ni1.5계 수소저장합금의 전기화학적 성질 (Electrochemical Properties of Hydrogen Absorbing Ability Ti1-XZrxVNi Ti1-XZrxV0.5Ni1.5 Alloys)

  • 조태환;박찬교
    • 한국수소및신에너지학회논문집
    • /
    • 제2권1호
    • /
    • pp.15-21
    • /
    • 1990
  • Nickel-hydrogen battery systems with metal hydride alloys are expected to have both higher energy density and lower pollution than nickel-cadmium cells. Nickel-hydrogen storage cells are expected to be well-suited for use in space crafts for a large capacity power storage system. Their major advantages are not only a capability of deep DOD(depth of discharge) using but also with excellent durability under excessive overcharging and overdischarging. In this study, the charge/discharge capacities, anodic polarization characteristics and durability for the continious charge/diacharge cycling of the $Ti_{1-X}Zr_XVNi$ and $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were measured by electrochemical method. The electrode properties of the copper or nickel plated $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were examined with a battery charge/discharge testing system in the temperature range of -5 to $25^{\circ}C$.

  • PDF

입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구 (Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization)

  • 박향아;김슬기;김응상;유정원;김성신
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.

지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구 (Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault)

  • 김진태;이승용;박상진;차한주;김수열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

배터리 가용성 극대화를 고려한 BESS의 AGC 주파수제어 추종운영방안 (Operating Method of BESS for Providing AGC Frequency Control Service Considering Its Availability Maximization)

  • 최우영;유가람;국경수
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1161-1168
    • /
    • 2016
  • Battery energy storage system(BESS) attract the attention of the power system operators with its fast response to a disturbance in spite of its limited energy capacity. This paper proposes the operating method of BESS for following the Automatic Generation Control(AGC) frequency control which is centrally distributed by a system operator. As BESS needs to just meet the control requirement from the system operator, it should be able to properly manage the state of charge(SOC) of BESS to be available to control signal. For doing these, the proposed method distributes the control requirement to available batteries in proportion to its SOC. In addition, unavailable batteries are controlled to recover the SOC to an appropriate range, and the recovering power is supplied by available batteries meeting the control requirement. Moreover, the proposed method manages the efficiency of power conversion system (PCS) by limiting the number of PCS to be assigned for the low control requirement. Finally, the case studies are carried out to verify the effectiveness of proposed strategy.

메타바나듐산암모늄과 양이온교환막을 활용한 바나듐 레독스 흐름전지에 관한 연구 (Study on the Vanadium Redox Flow Battery using Cation Exchange Membrane and Ammonium Metavanadate)

  • 정보영;유철휘;황갑진
    • 멤브레인
    • /
    • 제31권4호
    • /
    • pp.262-267
    • /
    • 2021
  • 메타바나듐산 암모늄으로 제조한 전해액과 양이온교환막인 Nafion117을 활용하는 바나듐 레독스 흐름 전지(vanadium redox flow battery, VRFB)의 전기화학적 성능을 평가하였다. VRFB의 전기화학적 성능은 전류밀도 60 mA/cm2에서 측정하였다. 메타바나듐산 암모늄으로 제조된 전해액을 사용한 VRFB의 평균 전류효율은 94.9%, 평균 전압효율은 82.2%, 평균 에너지효율은 78.0%를 보였다. 그리고 메타바나듐산 암모늄으로 제조된 전해액을 사용한 VRFB의 각 효율은 바나딜 설페이트(VOSO4)로 제조된 전해액을 사용한 VRFB의 각 효율과 비교하여 거의 동등한 값을 갖는다는 것을 확인하였다.

전기화학 커패시터 (Electrochemical Capacitors)

  • 김종휘
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.36-42
    • /
    • 2007
  • 전기 에너지를 가장 직접적으로 저장하는 기기로써 우리는 흔히 전지(battery)와 콘덴서(condenser)를 생각한다. 산업혁명 이후 과학과 기술의 엄청난 발전에 따라 여러 분야에서 다양한 문명이기의 개발과 활용이 있어왔지만 우리 생활에 밀접히 활용되고 있으며 각종 전기전자 시스템의 핵심 구성품인 이러한 전지나 콘덴서의 기술 발전 속도는 다른 분야에 비하여 상대적으로 뒤쳐진 상황이라고 볼 수 있다. 그러나 최근 10여년 동안 괄목할 만한 소재기술의 발전에 힘입어서 재래식의 콘덴서는 물론 니켈수소전지, 리튬이온전지, 리튬폴리머전지 등과 같은 최신형 2차전지들 조차도 갖지 못하는 장수명, 고출력 특성을 갖는 새로운 형식의 전기에너지 저장장치인 '전기화학커패시터(electrochemical capacitor)'의 개발이 실현되고 있다. 이에, 본 고에서는 전기화학커패시터에 대한 기본적인 이해와 이의 최신기술 동향에 대하여 간략히 소개하기로 한다.

Prototype Microgrid의 동특성 모의에 관한 연구 (A Study on Simulation of Dynamic Characteristics in Prototype Microgrid)

  • 최은식;최흥관;전진홍;안종보
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2157-2164
    • /
    • 2010
  • Microgrid is generally defined as cluster of small distributed generators, energy storages and loads. Through monitoring and coordinated control, microgrid can provide various benefits such as reduction of energy cost, peak shaving and power quality improvement. In design stage of microgrid, system dynamic simulation is necessary for optimizing of sizing and siting of DER(distributed energy resources). As number of the system components increases, simulation time will be longer. This problem can restrict optimal design. So we used simplified modeling on energy sources and average switching model on power converters to reduce simulation time. The effectiveness of this method is verified by applying to prototype microgrid system, which is consist of photovoltaic, wind power, diesel engine generators, battery energy storage system and loads installed in laboratory. Simulation by Matlab/Simulink and measurements on prototype microgrid show that the proposed method can reduce simulation time not sacrificing dynamic characteristics.

연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계 (The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System)

  • 김승민;최주엽;최익;송승호;이상철;이동하
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

바나듐 레독스 흐름 전지용 전해액으로 클로로황산 첨가에 관한 연구 (Study on the Electrolyte Added Chlorosulfuric Acid for All-vanadium Redox Flow Battery)

  • 오용환;이건우;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.169-175
    • /
    • 2016
  • The electrolyte added the chlorosulfuric acid ($HSO_3Cl$) as an additive was tested for the electrolyte in all-vanadium redox flow battery (VRFB) to increase the thermal stability of electrolyte. The electrolyte property was measured by the CV (cyclic voltammetry) method. The maximum value of a voltage and current density in the electrolyte added $HSO_3Cl$ was higher than that in the electrolyte non-added $HSO_3Cl$. The thermal stability of the pentavalent vanadium ion solution, which was tested at $40^{\circ}C$, increased by adding $HSO_3Cl$. The performances of VRFB using the electrolyte added and non-added $HSO_3Cl$ were measured during 30 cycles of charge-discharge at the current density of $60mA/cm^2$. An average energy efficiency of the VRFB was 72.5%, 82.4%, and 81.6% for the electrolyte non-added $HSO_3Cl$, added 0.5 mol of $HSO_3Cl$, and added 1.0 mol of $HSO_3Cl$, respectively. VRFB using the electrolyte added $HSO_3Cl$ was showed the higher performance than that using the electrolyte non-added $HSO_3Cl$.

독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어 (Optimized Design and Coordinated Control for Stand-alone DC Micro-grid)

  • 한태희;이지헌;김현준;한병문
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.