• Title/Summary/Keyword: Battery energy storage

Search Result 759, Processing Time 0.026 seconds

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Development of Battery Management System using Multiple Microcontroller (다중 마이크로콘트롤러를 사용한 배터리 관리 시스템의 개발)

  • Choi, Jeong-Won;Jang, WoonGeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.329-335
    • /
    • 2018
  • In an electric vehicle and Energy Storage System(ESS), a large number of batteries are connected in series or parallel to obtain high voltage and current. The battery management system(BMS) is needed because battery has a characteristic that explode in overcharging and overcurrent situations due to the nature of the battery material and the battery life is dramatically reduced when the battery is overdischarged below the specified voltage. In this paper, we proposed a system that can manage a large amount of batteries through the communication of master-slave type with multiple microcontroller. We confirmed the stable operation of the proposed system through the balancing-charging and storage mode experiments.

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Study on the Development of Battery Energy Storage Device Using Mid night Power (축전식 심야전력기기의 개발에 관한 연구)

  • Kim, Ho-Yong;Kim, Jae-Eon;Rho, Dae-Seok;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.63-66
    • /
    • 1991
  • With the diversity of life patterns and the improvement of level in life which have been resulted from the economic development, people have showed the tendency to pursue the comfortable life as well as the home automation or intelligent house. Furthermore, the clean energy supply and management system have been introduced for the solution of environmental problem on earth and the effective utilization of energy. This study is to describe the battery energy storage device, which is one of the clean energy supply and management systems that are economically efficient in both sides of supply and demand. and able to solve the problem of energy crisis.

  • PDF

Control of Microgrid System with Super-capacitor and Battery (수퍼 커패시터와 배터리를 이용한 마이크로그리드 시스템의 제어)

  • Choi, Yongoh;Lee, Eonsuck;Chung, Sekyo;Song, Yujin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.242-243
    • /
    • 2013
  • This paper presents a voltage and frequency regulation of a Micro-grid using a Battery energy storage system (BESS) and super-capacitor (SPC). The control methods for the both BESS and SPC are proposed to improve the regulation performance and battery life span. The simulation results using the PSCAD/EMTDC are provided to show the effectiveness of the proposed control.

  • PDF

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS (풍력-디젤-BESS 독립형 마이크로그리드 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5893-5898
    • /
    • 2014
  • This paper proposes a modeling method and operating algorithm of an islanding microgrid that is composed of a Battery Energy Storage System (BESS), wind turbine and diesel generator applied in island areas. Initially, the bilateral AC/DC converter was designed for charge/discharge for frequency and voltage to be maintained within the proper ranges according to the load and weather change, and the operating method was proposed for a diesel generator to operate when power supply from the wind turbine or BESS is insufficient. The proposed modeling and controller design method of BESS was applied to a typical islanded microgrid with a wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.