• 제목/요약/키워드: Battery charging and discharging

Search Result 214, Processing Time 0.025 seconds

Cell Balance of Secondary Battery by Using The Majority FET (다수의 FET를 이용한 2차 전지의 셀 밸런스에 관한 연구)

  • Lim, Geun-Wook;Cho, Hyun-Chan;Kim, Jong-Won;Kim, Kwang-Sun;Lee, Jung-Su;Yoo, Sang-Gil;Kang, Hee-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.19-22
    • /
    • 2008
  • In this paper, the cell balance of secondary battery using a large number of MOSFETs is discussed. We can balance the cells by controlling battery charging current with help of MOSFETs. If the cells are not balanced, we can not use the whole energy of the battery while charging and discharging, therefore, the energy efficiency is decreased. To increase the energy efficiency, we propose the MOSFET control algorithm which will perform cell balancing by controlling the charging current.

  • PDF

Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger (5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험)

  • Lee, Wu-Jong;Eom, Ju-Kyoung;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper proposes a design and experiment of three phase interleaved dc-dc converter for 5kW battery charger. The charger consists of a three-phase interleaved dc-dc converter, which interfaces batteries and DC link, and a grid connected inverter. Lead-acid battery is modeled in a simple R-C model by matlab. Parameters of the battery are estimated based on step current discharging test. The battery is connected to three-phase interleaved DC-DC converter in order to reduce the ripple current to the battery and so, increase the lifetime of battery. Controller for charging and discharging mode is designed and tested in a 5kW charger prototype.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Switching Method to Minimize the Current Ripple of 3-Phase Interleaved Bidirectional DC-DC Converter in Light Load Operation (3상 인터리브드 양방향 DC-DC 컨버터의 경부하 동작 시 전류 리플 최소화를 위한 스위칭 기법)

  • Jung, Jae-Hun;Nho, Eui-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.55-62
    • /
    • 2015
  • This paper deals with a switching method to minimize the current ripple component of 3-phase interleaved bidirectional DC-DC converter for charging and discharging of the battery. The characteristics of the output current ripple in 3-phase and 2-phase operation modes according to the variation of battery voltage is analyzed and a phase conversion method for minimizing the magnitude of the current ripple is proposed. The proposed method can extend the light load range because the switching frequency is lower than that of a 3-phase operating system. Simulation and experimental results show the usefulness of the proposed method.

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Development of the wind generation output stabilization with Lithium-ion battery (리티움-이온 배터리를 이용한 풍력발전의 출력안정화 시스템 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.178-179
    • /
    • 2010
  • This paper presents a simulation model and analysis of grid-tied wind turbine generator with batteries using the PSCAD/EMTDC software. The modeled system is consist of two inverters and one bidirectional DC/DC converter. These inverter are to capture the maximum active power under varying wind conditions and to keep the DC-Link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load. Aerodynamic models are applied for a wind turbine blade simulator.

  • PDF

Battery energy storage system for 10kW wind turbine output stabilization (배터리 에너지 저장장치를 이용한 10kW 풍력발전출력 안정화 시스템 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.36-37
    • /
    • 2010
  • This paper presents a simulation model and results of experiment about analysis of grid-tied wind turbine generator with batteries. The system consists of two inverters and a bidirectional DC/DC converter. These inverters are to capture the maximum active power under varying wind conditions and to keep the DC-link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load.

  • PDF

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.