• Title/Summary/Keyword: Battery charging and discharging

Search Result 211, Processing Time 0.03 seconds

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

Design of a Bidirectional Converter for Battery Charging, Discharging and Zero-voltage Control (배터리 충, 방전 및 영전압 제어를 위한 양방향 컨버터 설계)

  • Choi, Jae-Hyuck;Kwon, Hyuk-Jin;Kwon, Jae-Hyun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.431-437
    • /
    • 2022
  • This study proposes a converter that makes battery charging, discharging, and zero voltage control possible. The proposed topology consists of an LLC converter and a half-bridge inverter, and all power semiconductor devices are applied Si-MOSFETs. The topology is designed with an LLC switching frequency of 100 kHz, a half-bridge inverter switching frequency of 50 kHz, and a battery voltage of 5 V. The advantages of the charging/discharging operation of the 5 V battery voltage and the zero voltage control of the battery are verified. In addition, by using a two-stage topology, the battery can be charged, discharged through current control, and discharged to zero voltage. With the proposed topology, the current can be maintained even when the battery voltage drops to zero.

A Study on Stable Operation of Li-ion Battery Charging/Discharging System (Li-ion 배터리 충/방전 시스템의 안정적 운영에 관한 연구)

  • Yeo, Sung-Dae;Han, Cheol-Kyu;Cho, Tae-Il;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.395-402
    • /
    • 2016
  • When the operation of battery is converted at charging and discharging system based on a DC micro grid, the voltage is fluctuated. And excessive voltage fluctuation could cause damage or failure of charging and discharging equipment. Therefore, in this paper, we studied the operating schedule of the charging and discharging system based on the DC micro grid and a design point of the capacitor which was able to reduce the voltage fluctuation. A result of computer simulation showed that when a fluctuation-reducing capacitor which had an initial value of 600V/35mF was applied at the charging and discharging system based on a DC micro grid which was operated with three charging battery sets and five discharging battery sets, voltage fluctuation by charging and discharging operation was reduced by about 63.3%. Furthermore, voltage fluctuation which occurred when initial network voltage was stabilized was reduced by about 73%.

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

Charging-Discharging Behavior and Performance of AGM Lead Acid Battery/EDLC Module for x-HEV (x-HEV용 AGM 연축전지/EDLC 통합모듈의 성능 및 충방전 거동)

  • Kim, Sung Joon;Seo, Sung Won;An, Sin Young;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.84-91
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG and charging control systems are applied to HEV vehicles for the purpose of improving fuel economy. These systems require quick charge-discharge performance of high current. Therefore, a Module of the AGM battery with high energy density and EDLC(Electric Double Layer Capacitor) with high power density are constructed to study the charging and discharging behavior. In CCA, which evaluates the starting performance at -18 ℃ & 30 ℃ with high current, EDLC contributed for about 8 sec at the beginning. At 0 ℃ CA (Charge Acceptance), the initial Charging current of the AGM/EDLC Module, is twice that of the AGM lead acid battery. To play the role of EDLC during high-current rapid charging and discharging, the condition of the AGM lead-acid battery is optimally maintained. As a result of a Standard of Battery Association of Japan (SBA) S0101 test, the service life of the Module of the AGM Lead Acid Battery/EDLC is found to improve by 2 times compared to that of the AGM Lead Acid Battery.

Design of a cycler system for large capacity lithium-polymer battery (중대형 리튬폴리머 2차전지용 충방전기 개발)

  • Oh Dong-Seob;Oh Sung-Up;Lee Jong-Yun;Park Min-Ho;Seong Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.82-86
    • /
    • 2004
  • In this paper, a cycler system for the Lithium-Polymer battery with the large capacity of 120Ah is presented. This system is constituted as the two units for the charging and discharging. The Lithium-Polymer battery should be charged in CC and CV mode, and it is required a very high precision control of the voltage and current for the charging unit. To decrease the switching noises and harmonics, parallel operation method is adopted and utilized in the power conversion module. The discharging unit has a link AC system function to return the discharging energy of battery to AC line and has comparatively less thermal loss. These units are designed to be controlled and monitored by personal computer. The total system for the battery charging and discharging is described and presented.

  • PDF

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization (입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구)

  • Park, Hyang-A;Kim, Seul-Ki;Kim, Eung-Sang;Yu, Jung-Won;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.