• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.034 seconds

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.

CPLD-based Controller for Bi-directional Communication in a Capsule Endoscope (캡슐형 무선 내시경의 양방향 통신을 위한 CPLD 기반의 제어기 설계 및 구현)

  • Lee Jyung Hyun;Moon Yeon Kwan;Park Hee Joon;Won Chul Ho;Lee Seung Ha;Choi Hyun Chul;Cho Jin Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.447-453
    • /
    • 2004
  • In the case of a capsule that can acquire and transmit images from the intestines, the size of the module and the battery capacity in the capsule are subject to restriction. The capsule must be swallowable and the battery must maintain the stable power during the capsule travels in the gastrointestinal tract. Therefore, it is important to control the endoscope using bi-directional wireless communication. In this study, encoder and decoder CPLD modules for bi-directional capsule endoscopes were designed and implemented. The designed controller for capsule endoscope can transmit the images of GI-track from inside to outside of the body and the capsules can be controlled by external controller simultaneously. The designed and implemented controller was verified by an in-vivo animal experiments. From these experiments, it was verified that the CPLD module for bi-directional capsule endoscope satisfied the design specifications.

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Development of A DC Motor Controller for 24V-500W Small Electric Vehicle (24V-500W급 소형전동차용 DC모터 속도 콘트롤러 개발)

  • Bang, Jun-Ho;Lee, Woo-Choun;Yu, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1777-1783
    • /
    • 2012
  • In this paper, a new motor driving circuit is designed to improve the output performance of DC motor, and a controller is developed with the designed circuit. By the designed driving circuit, a controller can continuously drive DC motors by a transformer which has switching signals of a self-generated circuit to operate it. And while the DC motor have a maximum velocity, the reference voltage can be maintained higher value than that of triangle voltage and it makes the DC motor driving transistor ON and maximum power. A 24V-500W DC motor controller is developed with the proposed motor driving circuit, and also a small electric car is made and the driving test of it is executed. The test results shows that it can continuously control go and back speed of motor with 12A driving current. And also, it is verified that the over current and heat detecting function is operating correctly and the rest value of the used battery can be displayed as 6 step from 20 to 100%.

A Fully Integrated SoC for Smart Capsule Providing In-Body Continuous pH and Temperature Monitoring

  • Liu, Heng;Jiang, Hanjun;Xia, Jingpei;Chi, Zhexiang;Li, Fule;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.542-549
    • /
    • 2016
  • This paper presents a SoC (System-on-a-Chip) dedicated for a single-chip smart capsule which can be used to continuously monitor human alimentary canal pH and temperature values. The SoC is composed of the pH and temperature sensor interface circuit, a wireless transceiver, the power management circuit and the flow control logic. Fabricated in $0.18{\mu}m$ standard CMOS technology, the SoC occupies a die area of ${\sim}9 mm^2$. The SoC consumes 6.15 mW from a 3 V power supply, guaranteeing the smart capsule battery life is no less than 24 hours when using 50 mAh coin batteries. The experimental results show that measurement accuracy of the smart capsule is ${\pm}0.1$ pH and ${\pm}0.2^{\circ}C$ for pH and temperature sensing, respectively, which meets the requirement of in-body pH and temperature monitoring in clinical practice.

Relationship between electrical stimulus strength and contraction force from the inside of small intestine (전기 자극 강도에 따른 소장 내부에서의 수축력 관계)

  • Woo, S.H.;Kim, T.W.;Lee, J.H.;Park, H.J.;Moon, Y.K.;Won, C.H.;Lee, S.H.;Park, I.Y.;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Recently, capsule endoscope was developed to observe small intestine in human body. However, the capsule does not have any locomotive ability, which reduces the benefit of the capsule endoscope. Many researches have done to give locomotion to the capsule, still it consumes too much power to generate the motion by small battery. One of the moving method is electrical stimulus that consumes less power than many methods. The electrical stimulus method causes contraction in the small intestine, and it moves the capsule. Some of papers showed it is possible to guide the capsule by electrical stimulus, however the relationship between electrical stimulus at the mucous and contraction force in the small intestine is not reported, yet. In this paper, the mucous in the small intestine was stimulated, and measured the contraction force in the small intestine is shown. The result shows, the relationship between electrical stimulus parameters (voltage, duration) and contraction force. Also, equation between electrical stimulus parameters and contraction force is roughly induced.

Development of Satellite Conceptual Design Software (위성 시스템 개념설계 소프트웨어 개발)

  • Park, Woo-Sung;Yun, Joong-Sup;Ryoo, Chang-Kyung;Choi, Kee-Young;Kim, Hee-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.923-930
    • /
    • 2009
  • In this paper, we introduce a satellite conceptual design software which can be used for outlining a new satellite as well as for educational purpose. This software consists of three commercial tools: MATLAB, STK(Satellite Tool Kit), and Excel. The management of the design software is done by MATLAB which provides basic calculations, GUI(Graphical User Interface), Excel data base management, and STK control. STK, an orbital simulation software developed by AGI, takes a part of obtaining accurate orbital information of a satellite. Excel, a product of Microsoft, is used for the data base of previous satellites and for the saving place of temporary and final results of the software. The conceptual design of a satellite is to roughly estimate power system and mass. In the power system design, the sizes of solar array and battery are determined. Based on the database of existing satellites, we can estimate the subsystems's mass fraction of a target satellite. Design examples for Kompsat 1 and 2 are suggested for verification of the developed software.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

The Characteristics Analysis of The PCB Pattern for The Mobile panel Power Supply on The PMIC (모바일 패널 전원 공급을 위한 PMIC의 PCB 패턴의 특성 분석)

  • Chung, Sung-In;Kim, Seo-Hyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.39-44
    • /
    • 2011
  • This purpose of this study is to propose the characteristics analysis of the PCB pattern designed two modes for the output voltage value on the PMIC through converting the limited voltage value inputted from a battery. The PCB design technology has been undergoing difficulty in getting the related technology in a domestic market because of increasing EMI/EMC, Cross-talk, Impedance. And it requires to have the appropriate clearance between the patterns and the technology of PCB pattern width with a amperage according to various uses. The study carried out the characteristics analysis of the PCB pattern designed from a direct output method without a capacitor[mode1], to an output method through a capacitor[mode2] for PMIC output voltage value. Besides, we calculated the pattern width with a amperage using the equation suggested by IPC-2221, presenting the right way of the layout design to analyze the trouble with the test. Therefore, this study is expected to contribute not only to applying the PMIC design for the mobile panel power supply, but also helping the design and application technology in various areas such as car control, camera, note-book, computer, PDA, etc.

Study on Development of Portable Incubator (휴대용 인큐베이터의 개발에 관한 연구)

  • Eizad, Amre;Zahra, Falak;Alam, Hamza;Tahir, Hassan;Bangash, Afrasiab Khan;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.1-6
    • /
    • 2019
  • Preterm children require a controlled environment that is as close as possible to that inside the womb. Incubators are well equipped to fulfill this requirement; however, they are cumbersome and expensive, thereby restricting their portability and availability in less developed and rural areas. This research comprises the development and system validation of a portable incubator. The system consists of a collapsible baby enclosure that can be stowed inside the system base when not in use. The enclosure is made from acrylic such that it is easy to clean and allows unhindered visual observation of the occupant while being robust enough to withstand transit conditions. The system can be powered either by a mains supply or a 12-VDC automobile power supply. Additionally, it has an onboard battery to ensure a continuous supply during transit. A Peltier plate controlled using a microcontroller ensures the desired enclosure temperature irrespective of the ambient temperature. Built-in sensor probes can measure the skin temperature, pulse rate, blood oxygenation level, and ECG of the infant and display them on the system screen. The system function is validated by testing its peak power consumption and the heating and cooling performances of the environment control system.