• Title/Summary/Keyword: Battery Discharge Rate

Search Result 248, Processing Time 0.023 seconds

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries (리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery (Ni-MH 2차 전기 전극용 Zr-Ti-V-Ni-Mn계 수소저장합금의 조성에 따른 전기화학적 특성)

  • Choi, Seung-Jun;Jung, So-Yi;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.219-224
    • /
    • 1999
  • Effects of alloy modification for the $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage.

  • PDF

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Journal of Hydrogen and New Energy
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Performance Degradation of a Battery in an Energy Storage System (ESS) under Various Operating Conditions and Monitoring Study of ESS Connected with Photovoltaic (에너지 저장 시스템 (ESS)용 배터리의 운전조건에 따른 성능 저하 및 태양광 연계형 ESS 모니터링 연구)

  • Jung, Euney;Jung, Hanjoo;Jeong, Younki;Lee, Jaeyoung;Lee, Hongki
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • Performance degradation of a battery in 20 kWh energy storage system (ESS) under various operating conditions was studied. And energy saving of the ESS was also monitored by connecting with 20 kW photovoltaic (PV). PV-connected ESS saved 5~7% of energy consumption in 2013 compared to that without such system in 2012. As charge-discharge cycle increased, capacity decreased and the performance degradation was glaringly obvious after 40 cycles. And as charge and discharge rate increased, the performance degradation was more serious. After 50 charge-discharge cycles, a lot of degraded product was deposited on the surface of anode and cathode electrodes, and the cathode side was more contaminated. Therefore, in order to maintain the cell performance, it was more important to protect the degradation of the cathode side.

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF

Electrochemical Properties of $LiFePO_4-LiCoO_2$ Cathode Materials in Lithium Secondary Batteries (리튬이차전지 정극활물질용 $LiFePO_4-LiCoO_2$의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.241-242
    • /
    • 2006
  • In this work, the $LiFePO_4-LiCoO_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in different current density. The cell of $LiFePO_4-LiCoO_2$ observed two voltage plateau regions at 3.4 and 3.9V. The cell of $LiFePO_4-LiCoO_2$ (90:10 wt%) mixed cathode delivered a discharge capacity of ca. 139.8 mAh/g at a 0.2C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca 85.7mAh/g was obtained at a 2C rate.

  • PDF

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Jo, Jongmin;Kim, Sungsoo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.