• Title/Summary/Keyword: Battery Consumption

Search Result 577, Processing Time 0.032 seconds

A Study on the Additive of Positive Paste in Lead Acid Battery (납축전지 양극 Paste 첨가제에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.196-201
    • /
    • 2010
  • The influence of red lead($Pb_3O_4$) to curing and formation reaction properties when it was added in positive material of lead acid battery for vehicle use has been investigated. At the results, it was confirmed that the addition of red lead led 4BS crystal size to be smaller and increased the rates of 4BS formation and Pb consumption. Consequently the curing time was shortened to half compared with that of red lead-free one. In addition to this, the lead acid battery prepared by adding red lead showed 14% higher efficiency at the life cycle test than that without red lead.

Design and Operation of DC Home Grid with PV-Battery-Ultracapacitor (태양광-배터리-수퍼캡을 갖는 직류 홈 그리드의 설계 및 운영)

  • Heryanto, Nur A.;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • In this study, the design and operating strategy of DC home grid with PV, battery, and ultracapacitor have been discussed, The proposed sizing method can find the optimum size of the battery and PV which can reduce yearly utility energy consumption, whereas the control scheme can maintain the DC-bus voltage level of the DC home grid under different operating conditions, where day or night time operation, load and PV power levels, and the maximum current and state-of-charge of batter are considered. In addition, a supervisory power management strategy has been suggested, and its validity has been verified by HILS (hardware in-the-loop simulation) results.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

The Implementation of Low Power Operating System Based on Energy Mesuremen

  • Heon, Jeong-Jae;Ik, Chae-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.6-138
    • /
    • 2001
  • In recent years, as the battery-powered portable systems such as cellular phone, personal digital assistant (PDA) are widely used, power consumption comes to be a top-priority design concerns. Because those embedded systems become more and more complex than ever and they are operated under severe power and energy constrains, long battery lifetime with a limited energy is very critical. Even though there are various levels of energy optimization techniques, system level techniques are mainly focused on, for their stronger impact on power consumption of the overall system than traditional techniques : circuit level, switch level, architecture level, etc. In this technique, operating system (OS) plays the most important role in the system because it controls ...

  • PDF

A Study on the Operation Method of Photovoltaic/Diesel Hybrid Generating System

  • Park, Jae-Shik;So, Myung-Ok;Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.309-314
    • /
    • 2004
  • The exhaust gas emission from marine diesel engines is one of the major environmental issues. The authors focus the use of photovoltaic energy for the electric power system on marine ships. This paper proposes an operation method of a photovoltaic/diesel hybrid generating system for a small ship in consideration of the fluctuating photovoltaic power due to solar radiation. The aim of the proposed operation method is to minimize the fuel consumption and storage capacity of the battery. The validity of the proposed control method is shown by the numerical simulation based on the experimental data of the photovoltaic system.

An Analysis of Economy Improvement Method and Power Demand Effect when the Battery is Applied to the Building Based on the Measured Energy Consumption (전기저장장치의 건물수용가 적용에 따른 Demand영향 및 경제성 향상방안)

  • Yang, Seung-Kwon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.86-93
    • /
    • 2015
  • Recently, ESS became efficient device to stabilize electric power supply system with the development SG related technology. In fact. there are some constraints to supply ESS, because of the high cost and required space, but rapid technology development for ESS will make it more useful soon. So, through this paper, we analyzed the benefit and demand effect when the battery is applied the building based on the measured energy consumption. After that, we got the conclusion that there is a volume limit in ESS application, in a benefit view point. And we realized that there is a demand violation, and the Cost-based BEMS is the best solution to enhance the effect of ESS application.

Power Consumption Modeling and Analysis of Urban Unmanned Aerial Vehicles Using Deep Neural Networ (심층신경망을 활용한 도심용 무인항공기의 전력소모 예측 모델링 및 분석)

  • Minji, Kim;Donkyu, Baek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • As the range of use of urban unmanned aerial vehicles (UAV) expands, it is necessary to operate UAVs efficiently because of its limited battery capacity. For this, it is required to find the optimal flight profile with various simulations. Therefore, it is important to predict the power and energy consumption of the UAV battery. In this paper, we analyzed the relationship between the speed and acceleration of the UAV and power consumption during the flight. Then, we derived a linear model, which is easily utilized. In addition, we also derived an accurate power consumption model based on deep neural network learning. To find the efficient model, we used learning data as 1) the GPS 3-axis velocity and acceleration data, 2) the IMU 3-axis velocity only, and 3) the IMU 3-axis velocity and acceleration data. The final model shows 5.86% error rate for power consumption and 1.50% error rate for the cumulative energy consumption.

Flexible Electronics Devices for Smart Card Applications

  • Hou, Jack;Kimball, Bob;Vincent, Bryan;Ratcliffe, Bill;Mahan, Mike
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.75-77
    • /
    • 2008
  • Flexible electronics devices such as plastic display, thin film battery, membrane switch, organic memory for smart card applications will be presented. The performance and power consumption of various display technologies will be compared for OTP requirement in smart cards. Wireless power transmission by RF coupling through an antenna provides a potential power solution to smart cards. Finally, the general trend of smart card future developments will be discussed.

  • PDF