• Title/Summary/Keyword: Battery Cell

Search Result 942, Processing Time 0.027 seconds

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun;Ahn, Byeong-Min;Ahn, Cheol-Woo;Choi, Joon-Hwan;Lee, Dae-Han;Lim, Sung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.398-405
    • /
    • 2021
  • To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

Effect of Temperature on the Deterioration of Graphite-Based Negative Electrodes during the Prolonged Cycling of Li-ion Batteries

  • Yang, Jin Hyeok;Hwang, Seong Ju;Chun, Seung Kyu;Kim, Ki Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-212
    • /
    • 2022
  • In this paper, we report the effects of temperature on the deterioration of graphite-based negative electrodes during the longterm cycling of lithium-ion batteries (LIBs). After cycling 75 Ah pouch-type LIB full cells at temperatures of 45℃ (45-Cell) and 25℃ (25-Cell) until their end of life, we expected to observe changes in the negative electrode according to the temperature. The thickness of the negative electrode of the cell was greater after cycling; that of the electrode of 45-Cell (144 ㎛) was greater than that of the electrode of 25-Cell (109 ㎛). Cross-sectional scanning electron microscopy analysis confirmed that by-products caused this increase in the thickness of the negative electrode. The by-products that formed on the surface of the negative electrode during cycling increased the surface resistance and decreased the electrical conductivity. Voltage profiles showed that the negative electrode of 25-Cell exhibited an 84.7% retention of the initial capacity, whereas that of 45-Cell showed only a 70.3% retention. The results of this study are expected to be relevant to future analyses of the deterioration characteristics of the negative electrode and battery deterioration mechanisms, and are also expected to provide basic data for advanced battery design.

A Photovoltaic Energy Harvesting Charger with Battery Management (배터리 관리 기능을 갖는 빛 에너지 하베스팅 충전기)

  • Kim, Kook-dong;Park, Sa-hyun;Kim, Dae-kyung;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.561-564
    • /
    • 2014
  • In this paper a photovoltaic energy harvesting charger with battery management circuit is proposed. The proposed circuit harvests maximum power from a solar cell by employing MPPT(Maximum Power Point Tracking) control and charges an external capacitor battery with the harvested energy. The charging state of the battery is controlled according to the signals from the battery management circuit. The proposed circuit is designed in a 0.35um CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 84.8%, and the chip area including pads is $1350um{\times}1200um$.

  • PDF

A Study on Development of BMS module Algorithm for Bluetooth-based Lithium-Iron Phosphate Battery pack (블루투스 기반 리튬인산철 배터리팩을 위한 BMS 모듈 알고리즘 개발에 관한 연구)

  • Kim, Jong-Min;Ryu, Gab-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Currently, lithium-ion batteries are mainly used in energy storage equipment products including automobiles. This can be exposed to dangerous situations such as explosions in the event of incorrect battery management conditions that are overcharged or left in high temperature conditions. It also causes a situation battery cannot be used when it has been over discharged. Therefore, a system that manages the state of the battery is required. The battery management system aims to obtain optimum battery efficiency by accurately recognizing the state of the battery and keeping the voltage of each cell constant. In this paper, we develop a lithium-iron phosphate battery that has higher safety than a general lithium-ion battery. Then, in order to manage this, we try to develop the algorithm of the BMS module based on the Bluetooth communication using the MATLAB-SIMULINK.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Hardware passive power control simulation of hybrid propulsion system for electric propulsion aircraft (전기추진 비행기용 하이브리드 추진시스템 패시브 전력제어 하드웨어 시뮬레이션)

  • Park, Poo-Min;Lee, Kang-Yeop;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.544-547
    • /
    • 2011
  • This paper describes on hardware simulation of passive power control of propulsion system for electric propulsion aircraft of KARI. The propulsion system uses hybrid power system that is composed of solar cell, fuel cell and battery. The fuel cell is replaces by simulator due to its difficulty in handling while the other components are the same as that will be used on board. As the result, reliable power supply for propulsion is confirmed and each power source is well operated showing its characteristics.

  • PDF

Implementation of a CAN Based Real-Time Simulator for FCHEV (하이브리드 연료전지 자동차의 CAN기반 실시간 시뮬레이터 구현)

  • Shim, Seong-Yong;Lee, Nam-Su;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.410-413
    • /
    • 2004
  • In this paper, a simulator system for Fuel Cell Hybrid Electric Vehicles(FCHEV) is implemented using DSP boards with CAN bus. The subsystems of a FCHEV i.e., the fuel cell system, the battery system, the vehicle dynamics with the transmission mechanism are coded into 3 DSP boards. The power distribution control algorithm and battery SOC control are also coded into a DSP board. The real-time monitoring program is also developed to examine the control performance of power control and SOC control algorithms.

  • PDF