• Title/Summary/Keyword: Battalion Command in Battle Training

Search Result 4, Processing Time 0.02 seconds

Survival Analysis of Battalion-Level Commanders(leaders) Using Big Data as Results of Brigade-Level KCTC Training - Focused on Infantry Battalion Defensive Operations - (여단급 KCTC 훈련 결과 빅데이터를 활용한 대대급 이하 지휘관(자)의 생존분석 - 보병대대 방어작전을 중심으로 -)

  • Jinseong Yun;Hoseok Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.94-106
    • /
    • 2024
  • In this study, we conducted a survival analysis on battalion-level commanders(leaders), focusing on infantry battalion defensive operations using the big data of brigade-level KCTC(Korea Combat Training Center) training results. Unlike previous studies, we utilized the brigade-level KCTC training results data for the first time to conduct a survival analysis, and the research subjects were battalion-level commanders(leaders), which can affect the battle. At this time, the battle results were defined, and through cluster analysis, infantry battalions were divided into excellent, average, and insufficient units, and the difference in the survival rate of the commanders was analyzed through the Kaplan-Meier survival analysis. This provided an opportunity to objectively compare the differences between excellent and insufficient units. Subsequently, factors affecting the survival of commanders were derived using the Cox proportional hazard model, and it was possible to confirm the influencing factors from various angles by also using the survival tree model. Significance and limitations confirmed in the research process were presented as policy suggestions and future research directions.

ROK Army War-Game Simulation System Development (한국 육군 제대별 워게임 모의체계 개발사례)

  • 이해관;김장현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.31-35
    • /
    • 2003
  • In the late 1990s, ROK Army started developing a simulation model(ChangJo21) for division/corps level battle command training and finished it successfully. The CJ2l model provides realistic representation of Korean characteristics in doctrine, weapon systems, terrain, and climate etc. The successful development of CJ2l implanted us with confidence on high-technology model development and this has been our motive for development of JeonToo21 for battalion/regiment level battle command training and other war-game models like Hwarang21 (Rear Area Ops. Model) and Vision21 (Division Combat Analysis Model). Eventually, ROK Army was able to establish M&S system by echelons, from battalion to corps. Moreover interoperability between ROK-US simulation systems are on the progress. In this paper, we introduce recently developed 3 war-game simulation models and mention on the future directions of ROK Army Modeling & Simulation.

  • PDF

A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network (인공신경망을 이용한 대대전투간 작전지속능력 예측)

  • Shim, Hong-Gi;Kim, Sheung-Kown
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.25-39
    • /
    • 2008
  • The objective of this study is to forecast the operational continuous ability using Artificial Neural Networks in battalion defensive operation for the commander decision making support. The forecasting of the combat result is one of the most complex issue in military science. However, it is difficult to formulate a mathematical model to evaluate the combat power of a battalion in defensive operation since there are so many parameters and high temporal and spatial variability among variables. So in this study, we used company combat power level data in Battalion Command in Battle Training as input data and used Feed-Forward Multilayer Perceptrons(MLP) and General Regression Neural Network (GRNN) to evaluate operational continuous ability. The results show 82.62%, 85.48% of forecasting ability in spite of non-linear interactions among variables. We think that GRNN is a suitable technique for real-time commander's decision making and evaluation of the commitment priority of troops in reserve.

  • PDF

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.