• Title/Summary/Keyword: Batch reactor

Search Result 799, Processing Time 0.03 seconds

Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors

  • Kim, Dong-Jin;Kim, Yuri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this study, nitrous oxide ($N_2O$) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of $N_2O$-N in the denitrification phase and 1.6 mg of $N_2O$-N in the nitrification phase, resulting in a total emission of 5.5mg from 432mg of $NH_4^+$-N input. In contrast, the SND-SBR emitted 26.2mg of $N_2O$-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same $NH_4^+$-N input. From the $N_2O$ yield based on $NH_4^+$-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing $N_2O$ emission during nitrification and denitrification at wastewater treatment plants.

전처리 공정에 따른 폐 신문지의 효소 가수분해 특성

  • Mun, Nam-Gyu;Lee, Jae-Hwan;Kim, Seong-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.459-462
    • /
    • 2000
  • The pretreatment of used newspaper for the enzymatic digestion preprocess was performed on a percolation reactor and a batch reactor. The test condition of percolation process was $170^{circ}C$, 60min, 1 mL/min, and 400psi, that of batch was $40^{circ}C$, 3hr. and latm Reaction solutions used in pretreatment process were aqueous ammonia, sulfuric acid, water, and hydrogen-peroxide as an oxidizing agent. As a result, the effect of pretreatment was similar to batch and percolation process, but the yield of enzymatic hydrolysis was higher in batch than percolation. This batch pretreatment enhanced enzymatic hydrolysis rate and increased glucose yield from about 15 to 20%. The inhibition factors influenced the rate of enzymatic hydrolysis was investigated, and the ink contented newspaper was the major factor.

  • PDF

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor (혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산)

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).

Production of PBT(polybutylene terephthalate) Oligomer from Recycled PET(polyethylene terephthalate) (재활용 PET(polyethylene terephthalate)를 이용한 PBT(polybutylene terephthalate) 올리고머 제조)

  • Cho, Minjeong;Yang, Jeongin;Noh, Seunghyun;Joe, Hongjae;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.437-442
    • /
    • 2016
  • A new route for PBT (Poly butylene terephthalate) production from recycled PET (Poly ethylene terephthalate) has been explored. The route consists of glycolysis of PET (Poly ethylene terephthalate) wastes using 1,4-butandiol into BHBT oligomers and polycondensation of the oligomers into PBT oligomer. This process uses post-consumer or post-industrial recycled PET and converts it into high-end PBT type engineering thermoplastic via a chemical recycling process. Zink acetate was used as a catalyst for both glycolysis and polycondensation. Two types of reactor for the glycolysis, batch and semi-batch reactor, were investigated and their performances were compared. Semi-batch reactor removes ethylene glycol (EG) and THF (tetrahydrofuran) during the reaction. Amounts of EG and THF generated during the glycolysis reaction were measured and used as criteria for the reactor performance. Performance of semi-batch reactor was shown to be better than that of batch reactor. Optimum reaction condition for the semi-batch reactor was BD/PET ratio of 4, and reaction temperature of $220^{\circ}C$, giving high EG yield (max 91%) and low production of THF. In addition, it was confirmed that the molecular weight of PBT oligomer increases in accordance with the progress of the polycondensation reaction.

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Effects of Reaction Conditions on the Performance of Catalytic Pyrolysis of LDPE in a Semi-Batch Reactor (LDPE 반회분식 촉매열분해에서 조업조건이 반응 특성에 미치는 영향)

  • Na, Jeong-Geol;Leem, Chel-Hyen;Choi, Hwi-Kyoung;Chung, Soo-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.79-82
    • /
    • 2006
  • Fueled by ballooning oil prices, waste plastics are now regarded as being cheap and abundant renewable sources, removing their stigma of dirty wastes Catalytic pryolysis of plastics in liquid phase allows recovery of light fuel oil as well as green treatment of polymerics wastes, and therefore significant efforts have been devoted to this research field. In this study, catalytic Pyrolysis of LDPE was carl ied out in semi-batch reactor which equipped a unit of separation and recirculation. The effect of react ion conditions were examined by analyzing liquid oil yield and carbon number distribution of products

  • PDF

Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle (Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF