• Title/Summary/Keyword: Batch Scheduling

Search Result 66, Processing Time 0.023 seconds

Production Scheduling for a Two-machine Flow Shop with a Batch Processing Machine (배치처리기계를 포함하는 두 단계 흐름생산라인의 일정계획)

  • Koh, Shie-Gheun;Koo, Pyung-Hoi;Kim, Byung-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.481-488
    • /
    • 2008
  • This paper deals with a scheduling problem for two-machine flow shop, in which the preceding machine is a batch processing machine that can process a number of jobs simultaneously. To minimize makespan of the system, we present a mixed integer linear programming formulation for the problem, and using this formulation, it is shown that an optimal solution for small problem can be obtained by a commercial optimization software. However, since the problem is NP-hard and the size of a real problem is very large, we propose a number of heuristic algorithms including genetic algorithm to solve practical big-sized problems in a reasonable computational time. To verify performances of the algorithms, we compare them with lower bound for the problem. From the results of these computational experiments, some of the heuristic algorithms show very good performances for the problem.

Optimal Scheduling of Multi-product Batch Process for Common Intermediate Storage Policy; A Model for Batch Process Automation (다품종용 회분식 공정에서의 중간 저장 탱크 공유를 위한 최적 생산계획 ; 회분식 조업의 자동화 모델)

  • 정재학;이인범;양대륙;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.303-308
    • /
    • 1992
  • In this study, we propose a shared storage system which is more efficient policy than MIS(Mixed Intermediate Storage) policy for relatively rare storage system and can be called CIS(Common Intermediate Storage) policy. Using this strategy, we develop a new completion time algorithm and apply it to two kinds of optimal or near optimal scheduling method; combinatorial search and simulated annealing method. We also extend this strategy to other storage policy, for example MIS policy, with PLC(Programmable Logic Controller) logic and on/off action of electronic valves. It thus can be accepted as a basic form of FMS(Flexible Manufacturing System) for operating various storage policies. Finally we suggest the interlocking block to compansate for the shortcoming of CIS policy, i.e, complication of operation and safety, resulting in a basic batch process automation mode.

  • PDF

Efficient Scheduling Algorithm for Sequential Multipurpose Batch Processes (순차적 다목적 회분식 공정을 위한 효과적인 일정계획)

  • 강진수;복진광;문성득;박선원;이태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.426-432
    • /
    • 2000
  • A novel mixed-integer linear programming model for the short-term scheduling of a sequential multipurpose batch plant is addressed. First, a time slot domain to each unit is introduced. By assigning each time slot to a product, we obtain the production sequence that minimizes makespan. For multiple-unit assignment problem where a few parallel units with the same function exist, production paths are defined for the distinction of the same stage with a different unit. As a second issue, the model adapted for sequence dependent changeover is presented. For a time slot of a unit, if a product is assigned to the time slot and a different product is assigned to the adjacent time slot, the changeover time considering this situation is included. The performance of the proposed models are illustrated through two examples.

  • PDF

Rescheduling algorithms considering unit failure on the batch process management (회분공정의 장치 고장을 고려한 동적생산계획 기법)

  • Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1028-1031
    • /
    • 1996
  • Dynamic scheduling is very important in constructing CIM and improving productivity of chemical processing systems. Computation at the scheduling level requires mostly a long time to generate an optimal schedule, so it is difficult to immediately respond to actual process events in real-time. To solve these problems, we developed dynamic scheduling algorithms such as DSMM(Dynamic Shift Modification Method), PUOM(Parallel Unit Operation Method) and UVVM(Unit Validity Verification Method). Their main functions are to minimize the effects of unexpected disturbances such as process time variations and unit failure, to predict a makespan of the updated dynamic schedule and to modify schedule desirably in real-time responding to process time variations. As a result, the algorithms generate a new pertinent schedule in real-time which is close to the original schedule but provides an efficient way of responding to the variation of process environment. Examples in a shampoo production batch process illustrate the efficiency of the algorithms.

  • PDF

A Balanced Batching Scheme of User Requests in Near VOD Servers

  • Jung, Hong-Ki;Park, Sung-Wook;Park, Seung-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.322-325
    • /
    • 2000
  • In a batch scheduling policy being different from real video system, the requests are not served immediately due to grouping user's requests upon every scheduling points. Such waiting delays by inefficient managements makes an unfair service to users and increases the possibility of higher reneging rates. This paper proposes an adaptive batch scheduling scheme which reduces the average waiting time of user’s requests and reduces the starvation problem for requesters of less popular movies. The proposed scheme selects dynamically multiple videos in given intervals based on the service patterns which reflect the popularity distribution and resource utilizations. Experimental simulation shows that proposed scheme improves about 20-30 percent of average waiting time and reduces significantly the starving requesters comparing with those of conventional methods such as FCFS and MQL.

  • PDF

Integrated Process Planning with Scheduling System in Cellular Manufacturing

  • Leem, Choon-Woo;Kim, Young-Il;Kim, Wong-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.27-36
    • /
    • 1996
  • The objective of this paper is to outline an integrated cellular manufacturing system (ICMS) which integrates process planning and scheduling in the cellular manufacturing environment. It combines design systems with manufacturing systems in batch production. Furthermore, it is developed to overcome the difficulties that exist in the current manufacturing practices.

  • PDF

Near optimal production scheduling for multi-unit batch process

  • Kim, Kyeong-Sook;Cho, Young-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1718-1723
    • /
    • 1991
  • The determination of a production sequence is an important problem in a batch process operation. In this paper a new algorithm for a near optimal production sequence of N product in an M unit serial multiproduct batch process is proposed. The basic principle is the same as that of Johnson's algorithm for two-unit UIS system. Test results on a number of selected examples exhibit the superiority over previously reported results. In addition, a tabulation technique is presented to calculate the makespan of a given sequence of production for all processing units under UIS mode.

  • PDF

Real-Time Scheduling System Re-Construction for Automated Manufacturing in a Korean 300mm Wafer Fab (반도체 자동화 생산을 위한 실시간 일정계획 시스템 재 구축에 관한 연구 : 300mm 반도체 제조라인 적용 사례)

  • Choi, Seong-Woo;Lee, Jung-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.213-224
    • /
    • 2009
  • This paper describes a real-time scheduling system re-construction project for automated manufacturing at a 300mm wafer fab of Korean semiconductor manufacturing company. During executing this project, for each main operation such as clean, diffusion, deposition, photolithography, and metallization, each adopted scheduling algorithm was developed, and then those were implemented in a real-time scheduling system. In this paper, we focus on the scheduling algorithms and real-time scheduling system for clean and diffusion operations, that is, a serial-process block with the constraint of limited queue time and batch processors. After this project was completed, the automated manufacturing utilizations of clean and diffusion operations became around 91% and 83% respectively, which were about 50% and 10% at the beginning of this project. The automated manufacturing system reduces direct operating costs, increased throughput on the equipments, and suggests continuous and uninterrupted processings.

  • PDF

Study of Scheduling Optimization through the Batch Job Logs Analysis (배치 작업 로그 분석을 통한 스케줄링 최적화 연구)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1411-1418
    • /
    • 2017
  • The batch job scheduler recognizes the computational resources configured in the cluster environment and plays a role of efficiently arranging the jobs in order. In order to efficiently use the limited available resources in the cluster, it is important to analyze and characterize the characteristics of user tasks. To do this, it is important to identify various scheduling algorithms and apply them to the system environment. Most scheduler software reflects the user's work environment, from job submission to termination, as well as the state of the inventory and system status of the entire managed object. It also stores various information related to task execution, such as job scripts, environment variables, libraries, wait for tasks, start and end times. In this paper, we analyze the execution log of the scheduler such as user 's success rate, execution time, and resource size through information related to job execution through batch scheduler. Based on this, it can be used as a basis to optimize the system by increasing the utilization rate of resources.

An On-line Scheduling Algorithm for a GRID System (GRID시스템을 위한 온라인 스케줄링 알고리즘)

  • 김학두;김진석;박형우
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.95-101
    • /
    • 2004
  • The scheduling problem that maps independent tasks to heterogeneous resources in distributed computing systems is known as NP-complete[1]. GRID[2] is an example of distributed systems that consisted of heterogeneous resources. Many algorithms to solve this problem have been presented[1,3,4,5]. The scheduling algorithm can be classified into static scheduling algorithms and dynmic scheduling algorithms. A dynamic scheduling algorithm can be used when we can not predict the priority of tasks. Moreover, a dynamic scheduling algorithm can be divided into on-line mode algorithm and batch mode algorithm according to the scheduling time[1,6]. In this paper, we propose a new on-line mode scheduling algorithm. By extensive simulation, we can see that our scheduling algorithm outperforms previous scheduling algorithms.