Proceedings of ITC-CSCC 2000, Pusan, Korea

A Balanced Batching Scheme of User Requests
in Near VOD Servers

Hong-Ki Jung*, Sung-Wook Choi**, Seung-Kyu Park*
Affiliation : Multimedia and Computer Architecture Lab, The professional graduated school of Information and
Communication Technology in Ajou univ.*, Dept. of Computing, Incheon Junior College**
Address: Ajou univ, San 5, Wonchon-dong, Paldal-gu, Suwon, Republic of Korea.
Tel : +82-331-219-2532, Fax: +82-331-219-1614
E-mail : keeper, sparky@madang.ajou.ac.kr* , swchoi@falcon.icc.ac kr**

Abstract : In a batch scheduling policy being different
from real video system, the requests are not served
immediately due to grouping user's requests upon every
scheduling points. Such waiting delays by inefficient
managements makes an unfair service to users and
increases the possibility of higher reneging rates. This
paper proposes an adaptive batch scheduling scheme
which reduces the average waiting time of user’s
requests and reduces the starvation problem for
requesters of less popular movies. The proposed scheme
selects dynamically multiple videos in given intervals
based on the service patterns which reflect the popularity
distribution and resource utilizations. Experimental
simulation shows that proposed scheme improves about
20-30 percent of average waiting time and reduces
significantly the starving requesters comparing with
those of conventional methods such as FCFS and MQL.

1. Introduction

One of typical applications of stored video services is
video-on-demand(VOD). The recent studies in the issues
regarding to the maximum throughput of user requests
can be found in three areas: user requests scheduling,
buffer managements, and disk store managements.
Depending on the user service policy, the systems fall in
the category of either real or near VOD systems. In near
VOD systems, same video streams can be distributed to
many users using multicast mechanism of ATM [1,3,4].
For grouping users to multicast, optimal batching
intervals need to be determined so as to minimize the
average waiting time of user requests and to minimize
reneging probability.

Dan and Sitaram proposed a batching scheme called
dynamic batching policy[3]. In the scheme, multiple
reservation queues are assigned for videos and the
number of requests in the queues are investigated for
given intervals. The most frequently requested video is
scheduled dynamically. The scheme, however,
conservatively reserves the capacity of the server for the
popular videos, which wastes the resources. Golubchik
proposed different scheme called adaptive piggybacking
based on the observation that 5 % of speed difference in
playing video cannot be recognized by human being
[2,5,7]. This scheme accepts users to have the real video
service by piggybacking video streams afterwards so as
to get merged as one video streams. Artificial skipping
and duplications of frames degrade the QoS and waste of

This work is supported in part by the Ministry of
Information & Communication of Korea (Support Project of
Universitv foundation research <'99>) sunervised bv IITA

the resources utilizations[6].

An adaptive batch scheduling scheme is required for
reducing the average waiting time of users' requests
which reduces the starvation problem for the requesters
of less popular movies. Based on the service patterns
which reflect the popularity distribution and resource
utilizations, this scheme can reduce the waiting delays
which resulted in higher reneging rates.

We propose in this paper a balanced scheme of
batch scheduling in near VOD systems which reduces
the average waiting time and supports a fair scheduling
for user requests.

2. Batch Scheduling

In a batch scheduled VOD system, a server provides the
high capacity storages which supply the video streams to
clients' requests. The requests from clients are listed in
the request queue in the server during batch intervals and
the necessary resources are assigned to requests on
scheduling time. The receive queue in the client is a
buffer for the streams received from the server and used
for supplying the streams during playing back.

The performance of the system is mainly
determined by the grouping interval of user requests and
batch scheduling policies. Constructing VOD system
based on batching scheme thus needs two major
elements, the interval and scheduling policy.

Determining an optimal interval time comes from
reflecting factors both from user requests, expressed by
"grouping"”, and from a server which provides streams
based on available resources. Determining batching
interval can be made either by taking the queue length
into consideration or by reflecting the distribution of user
requests. The former counts the size of the queue. This
leads to a long average waiting time when the arrival
rates have a high deviation. The latter may use constant
interval time regardless of the arrival rates or use the
popularity distribution,

A scheduling policy means that there is a certain
way to select a requester which will be served among the
requesters in the queue. The typical scheduling policies
are First Come First Service (FCFS) and Multiple Queue
ListtMQL) [3,4]. The FCFS, as name implies, is a
policy in which the serve is taken place for the requester
who arrived first. This makes an even distribution of
services regardless of popularity of the movies but leads
to longer average waiting time. MQL on the other hand
takes the frequency of requests into consideration. The
most frequently requested movie in the queue is served
for every given interval.

— 322 —

request video numbers
31124 51132 11222,43552,25211,5242315

43
I i T = ﬁ
OO 2]
video sefect

batching 1 t t2 13 ta t5 t6

interval
Fig. 1 Example of MQL scheduling

The figure 1 shows the requested video numbers
and the selected movies by MQL policy on every
scheduled interval. In the figure 1, the video 1 is selected
at t0 since it has two requests (largest queue) in the first
interval while the video 2 is selected at tl since video 2
has same largest queue as that of video 1 but arrived
earlier than that of video 1 in the second interval.

3. Adaptive Batch Policy

We propose an Adaptive Batch Scheme (ABS) in which
the interval time is determined based not only on the
users request rates but on the video popularity. The aim
of the ABS is to provide a fair scheduling and small
average waiting time. The adaptive scheduling and
dynamic multiple selections are applied to the scheme.

Figure 2 shows the model of ABS. In the proposed
scheme, each video has a queue of the users requesting a
same movie. Only the videos with the queue lengths
longer than k and the videos whose customer waited
longer than the maximum waiting time day » Which is

given as a parameter, are the candidates of scheduling.

viden 1 client
-4—— client
¥ client
video Z — chj,m
“—client

-
vide! client
] | 3: client
0 cliont

Video ni client
Lzugw " IIII T o
multiple client

sarvice Teavest cueue

Round sobin Scheduling

shared butfer

Figure 2. Model of ABS scheduling

3.1 Dynamic multiple selection

Simply applying a Zipf distribution [3] as a base for
determining batch intervals introduces several problems.
The intervals get longer when this scheme is used for
unpopular video and it is not efficient when the
popularity pattern changes often. To get over these
problems, multiple videos are selected in the ABS
scheme, whose queues are of the lengths more than k.
Determining the length k contributes significantly to the
performance. Two methods are suggested in the
following section for deciding k, in which one is a
heuristic method derived by observing the Zipf
distribution and the other is derived using the utilization
of the server resources. To avoid the starvation of the
users whose requested videos are much less popular, the
videos whose customers have waited a given maximum
time are also selected for the candidates in the scheduling
list in the ABS scheme.

1

P2 *[4*[T1TaJ1]*[+*
1 2
1 4
1

4 5
AT T{3TV |3 *[4]1f4]21*T3T4a]27T1
4 1 3
1 4 3
4 1 3
2 4

Fig 3. Example of multiple selection of ABS

The figure 3 shows an example of multiple
selections by ABS scheme where ko = 3> Where Kein

means the length of a queue of the video for candidate
scheduling, doax = biny *3, in which By, is the
batching interval. One or two videos are shown to be
selected by the ABS in the example while FCFS and
MQL has only one selected by their policy on every

intervals.

3.2 Adaptive Scheduling

If a too big number is given to k, the service waiting time
gets bigger. If we want a smaller k, the efficient
management of the server resources are difficult. The
number k must also be adaptively determined as time
goes since the requests rate and popularity patterns may
change over time.

The number k can be obtained either by Zipf
distribution or by resource utilization. The Zipf
distribution says that more that 50 percent of users are
requesting only 10 ~ 15 percent of most popular videos.
The figure 4 shows an algorithm how to get the number k
based on the popularity patterns.

Algorithu for popularity
repeat
while (time-interval = null) do skip;
k:= previous_minimum_service_frequency,
n:=(current_service_video_count
service_count_for_maximum_waiting_time)/
(all_request_video_count);
if n > given_popularity_ratio
then k:=k + |
else
if n < given_popularity_ratio
thenk :=k-1;
until false;

Fig. 4. Determining k with video popularity.

The ratio in the algorithm is obtain by calculating
the percentage: the number of videos with queue length
more than k minus the number of videos with waiting
time more than do OVET the number of total requests

during the intervals of observation. This method works
good for large servers but it suffers the performance for
small systems which have relatively small resources.

The figure 5 shows an algorithm how to get the
number k based on the resources available. For a given
situation the resources, the buffers and disk bandwidth,
are over utilized, the number k is increased. The k is de-

— 323 —

Algorithm for Resonrce
repeat ’ R
while (time-interval = null) do skip;
k:= previous_minimum_service_frequency;
if current_available_resource_count <
lower_limit_resource_count
then k:=k + |
else if currant_available_resource_count >
upper_limit_resource_count
thenk :=k-1;
until false;

Fig. 5. Determining k with resource utilization

creased on the opposite situation.
4. Simulation Results

The conventional scheduling methods FCFS and MQL
are evaluated comparing with the proposed scheme ABS
in the simulation. In the simulation, the average waiting
service time and maximum waiting time are obtained for
a given server capacity. The Table 1 lists the
parameters used in the simulations. The demand pattern
of selecting videos is assumed to have a Zipf distribution
and the demanding rate has a Poisson Distribution with
A=l, one per second. The maximum waiting time in
ABS is set to 600 seconds and initial k is 6, which is
changing over time in the adaptive method. The given
population ratio is set to be 10 % considering 10 to 15
percent is the most popular movies in the Zipf
distribution.

Table 1. Parameters for the simulation.

Contents -
Zipf distribution

Parameters:

Request pattern

for videos

A (poisson) Arrival rate 1/sec
V_no Number of video 100
V_play_time Video length 3600 sec
Max_wait_time | Max. waitng time | 600 sec
Time_interval Batching interval | 60 sec
Data_count Data count 2000

The figure 6 shows the pattern of requested
frequencies for 100 videos, in which the video index is
shown horizontally.

300

200

FREQUENCY OF SERVICE REQUEST

0
100 11.00 21.00 31.00 41.00 51.00 61.00 71.00 81.00 91.00
8.00 16.00 26.00 36.00 46,00 56.00 66.00 76.00 8B6.00 96.00

VIDEO_ID

Eic 6. Servi " y

numbers.

The figure 7,8,9, and 10 shows the results of the
analysis on the waiting time for service. The scheduling
methods under the simulations are FCFS, MQL, ABSI,
which means the ABS scheme with the interval obtained
by considering the video popularity, and ABS2, where
the resource utilization is used to get the interval.

8000

7000
6000 4
5000

4000

3000

2000

1000

Mean

1.0 5.09.0 13. 17. 21.25. 29. 33. 37. 41,45, 49. 53. 57, 61. 65.

Origin batching state

Fig. 7. Average waiting time over batch scheduling
points_

The figure 7 and 8 shows the average waiting time
over elapsed batch intervals for each scheduling methods.

The unit in the figures is all 10 msec (0.1sec). The
ABS1 and ABS2 have smaller waiting time by 20 to 30
percent.

5000

4000

3000

2000

W_ABS1 W_ABS2

W_FCFS W_MQL

Fig. 8. Average waiting with respect to scheduling
policies.

The figure 9 shows the number of requests which
exceed the maximum waiting time, 600 seconds, where
the 600 seconds is guaranteed as a maximum waiting
time. The ABS1 and ABS2 have the half of exceeded
ones than those of FCFS and MQL but they do not keep
the promise of guaranteed waiting time. Increasing the
maximum waiting time by 10 percent, which becomes
650 second, makes the ABS1 and ABS2 satisfy all
customers with zero exceeding waiting time. The figure
10 shows the results in which the FCFS and MQL still
have high waiting requesters

The Figure 11 and Figure 12 show the resource
utilization over batch scheduling points and average
utilization for scheduling policies, respectively.

— 324 —

500

400

300

Number of cases

W_FCFS W_MQL W_ABS1 W_ABS2

Fig. 9. Number of requests exceeding the maximum
waiting time (600 seconds).
500
400
300
200
w
3
3
5 100
2
€
3
=z Q LTI, LT

w_ABSH W_ABS2

W_FCFS w_MaL

Fig. 10. Number of requests exceeding the 650 seconds.

The ABS2 which was based on the resource
utilization shows a highest utilization where the initial
level is set to 70 percent. The higher utilization of
resource in ABS2 gives the lowest waiting time in the
figure 8.

400

300 A

200
R _FCFS
....... R_MQL
100
L.._R_ABS
- R_ABS2

Mean

1.05.09.0 13.17.21.25,29.33. 37.41.45.49. 53.57.61. 65.

Origin batching
Fig. 11. Resource utilization over batch scheduling
points

5. Conclusion

An adaptive scheduling scheme is proposed in this paper
to give the lowest average waiting time of requesters
while the scheme guarantees a maximum waiting time
for requesters for low popular videos. The queue length k
1s obtained reflecting the popularity and resource status

170

160

150

140

Mean

130

R_ABS2

Fig. 12. Average utilization for scheduling policies

R_FCFS R_MaQL R_ABS1

adaptively.

The simulation results show that the proposed
schemes, ABS1 and ABS2, reduces the average waiting
time by 20 - 30 percent than those of FCFS and MQL
scheduling policies. The exceeded waiting time of ABS
scheme can be eliminated all by increasing 10 percent of
guaranteed waiting time. The utilization factors of
resources for each scheduling policy did not make much
difference. The proposed adapted scheme is expected to
fit well specially in the heavily changing environment of
services.

Reference

(1] Heek-Young Woo, Chong-Kwon Kim, "Multicast
Scheduling for VOD Services". Multimedia Tools And
Applications, pp 157-171, 1996

[2] Leana Golubchik, John C.S. Lui, "Adaptive
piggybacking: a novel technique for data sharing in
video-on-demand storage servers”. Multimedia Systems,
pp 140-15, 1996

[3] Asit Dan, Dinker Sitaram, "Dynamic batching
policies for an on-demand video server". Multimedia
Systems, pp 112-121, 1996

{4] Asit Dan, Dinkar Sitaram and Perwez Shahabuddin,
"Scheduling Policies for an On-Demand Video Server
with Batching". ACM Multimedia, pp 15-23, 1994

{51 L.Goubchik, J.C.S. Lui. and R. Muntz, "Reducing
/O demand in video-on-demand stoage servers", In
proceeding of Intl. Conference on Measurement and
Modeling of Computer System st. (SIGMETRICS "95),
pp 25-36, 1995

[6] Kurt Rothermel, Tobias Helbig, "An adaptive
protocol for synchronizing media streams", Multimedia
Systems, pp 324-336, 1997

{7] Hong-ki Jung, Seung-Kyu Park, "Grouping and
Buffer Management Methods in a VOD Server" ITC-
CSCC'99, Sado, Niigata, Japan, pp899-902, July 13-15,
1999

[8] Wen-Jiin Tsai and Suh-Yin Lee, "Dynamic Buffer
Management for Near Video-On-Demand Systems".
Multimedia Tools and Applications, pp 61-83, 1998

— 325 -~

