• Title/Summary/Keyword: Batch Plant

Search Result 264, Processing Time 0.023 seconds

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Comparative Analysis of Biomass Yield Coefficient (YH) in Different Metabolic Regimes of Aerobic, Anoxic and Anaerobic Conditions (하수고도처리 공정내 호기성, 무산소성 및 혐기성 반응조에서 종속영양 미생물 생산계수, YH의 비교분석)

  • Shin, Jung Sub;Ko, Kwang Baik;Lee, Ji Young;Lim, Se Ho;Kang, Seung Hyun;Park, Jae Han
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.451-455
    • /
    • 2006
  • Heterotrophic biomass yield coefficients, $Y_H$, for aerobic, anoxic and anaerobic reactors were successfully estimated for the two wastewater treatment plants, where one plant was operating in the $A^2/O$ process and the other was operating in the 4-stage BNR process. The estimation of $Y_H$ was undertaken by plotting the biomass COD concentrations versus the soluble COD concentrations in order to calculate the ${\Delta}biomass$ COD/ ${\Delta}soluble$ COD in each batch reactor. The batch reactors employed in this study were fed by filtered influent and mixed liquors in the ratio of 10:1, and operated in the aerobic, anoxic and anaerobic conditions, which represented the actual operating conditions for the $A^2/O$ and 4-stage BNR process. The average $Y_H$ values of the aerobic, anoxic and anaerobic reactor for the $A^2/O$ process were 0.52, 0.41 and 0.18 mg COD/mg COD, respectively, and those for the 4-stage BNR process were 0.58, 0.40 and 0.20 mg COD/mg COD, respectively. The average ratio of the $Y_H$ for aerobic reactors to those for the anoxic reactors were about 1:0.79 for the $A^2/O$ process, and about 1:0.69 for the 4-stage BNR process. The experimental method for anoxic and anaerobic $Y_H$ estimation shown in this study has turned out to be simple and efficient in its practical application.

Decontamination of Waste Water Polluted with Phenolic and Anilinic Compounds Using Plant Materials (식물체를 이용한 Phenol 및 Aniline성 폐수의 정화)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.228-233
    • /
    • 2000
  • This study was carried out to estimate the possibility on the removal of phenols and anilines, which were contained in pulp or dye waste water, and the reusability of plant materials, shepherd's purse and turnip. Most of phenols catalyzed with shepherd's purse were removed more than 90% in the presence of $H_2O_2$, and the removal was ranged from 53.1% for 2,6-DMP to more than 99% for 2,4,6-TCP when turnip was used as catalysts. The removal of anilines catalyzed with shepherd's purse was ranged from 42.2% for 2-CA to 78.7% for 3,4-DCA in the presence of $H_2O_2$, and in case of turnip, from 31.5% for 2-CA to 90.0 % for 2,4-DCA. The reuse of plant materials was proved to be possible for not only the batch method but also the continuous method. No decreasing removal was observed during 30 cycles in waster water contaminated with 100ppm of 2,4-DCP. However, it was observed that the removal was decreased with increasing the number of cycles in higher concentration of 2,4-DCP(800ppm). Therefore, it could be suggested that the number of reusable cycles depends on the initial concentration of substrates.

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

A Study on the Combined Treatment of Municipal Solid Waste Landfill Leachate (도시폐기물매립지침출수의 병합처리에 관한 연구)

  • 김동민;이병인
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • An experimental research was conducted in order to study the combined treatment o of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was that of Chungnang municipal sewage treatment plant in Seoul. Several sets of bench~scale sequencing batch reactor(SBR) were used as e experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of treatment time. The experiment lasted for about 2 years. The result are as follows ; 1. The characteristics of leachate were pH 7.5~8.2, BOD 80~336mg/L, COD 908~1,460mg/L, NH3-N 1,409~2,330mg/L, T~P 2.7~7.lmg/L, Cl~3,540~4,085mg/L, a and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9~7.3, BOD 78.4~129.3mg/L, COD 121.2~305.0mg/L, T~N 14.9~36.4mg/L, T-P 2.3~8.9mg/L. 2. The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before bi이ogical treatment and a combined treatment of municipal sewage. 3. The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage. And the removal efficiency of COD increased n notably, as its treatment time increased. 4. The various contents of the electrolytic treated leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 89.9%, 86.1%, 79.2%, and 69.8%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 30 % of that of sewage. And the removal efficiency of C COD increased notably, as its treatment time increased.

  • PDF

Correlation between Corrosion Rate and Red Water on Application of Corrosion Inhibitor in Drinking Water Distribution System (배급수 계통에서 부식억제제 적용에 따른 부식과 적수와의 상관관계)

  • Woo, Dal-Sik;Ku, Sung-Eun;Lee, Byung-Doo;Kim, Ju-Hwan;Moon, Kwang-Soon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.68-77
    • /
    • 2005
  • This study was performed to evaluate the application of corrosion inhibitor and to examine the correlation between corrosion rate and red water in a series of batch tests and a test using auto corrosion monitoring system at A water treatment plant in Gyeonggido. The corrosion study in the auto corrosion monitoring system indicated that Fe concentration decreased by 30~50% and corrosion rate also reduced remarkably with corrosion inhibitor at $1.8mg\;PO_4/L$. After addition of corrosion inhibitor, it was indicated the effective adsorption of the inhibitor on the surface of the pipe line forming a protective film. The corrosion rate increases with the increase in Fe concentration. With $1.8mg\;PO_4/L$ of corrosion inhibitor, the corrosion rate decreased remarkably. Fe concentration had correlation to not only red water problems but also the corrosion rate that actually dissolved into the water, primarily due to the deposition of oxidized iron or other compounds as a scale, which serves as a large reservoir of corrosion by-product. Therefore, corrosion rate can be estimated by Fe concentration. For these reasons, an effective corrosion inhibitor is also an effective red water control reagent. The effect of the corrosion inhibition can last for some time even the application the corrosion inhibitor is discontinued. For the cost effective and efficient corrosion control, the concentration and timing of corrosion inhibitor addition must be determined properly.

A Study of Physicochemical treatment facility for Purifying the Mine Water in Dongwon Sabuk Mine., Ltd. ((주)동원 사북광업소 갱내수 정화를 위한 물리화학처리시설에 대한 연구)

  • An, Jong-Man;Lee, Yong-Bok;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2010
  • As the target area of this study, the coal mine site of Dongwon Sabuk mine.,ltd. is located in the remote mountainous region. To purify the acid mine water contaminated with heavy metals, a pilot-scale plant was built at the surrounded area of a mine shaft and operated to simulate active treatment system that could not only possibly setup the facility in a small available area, but also has a high efficiency. According to the various conditions of basin sequence, existence of sludge return, and lime injection position, six different types of treatment series were investigated in terms of treatment efficiency. As a result, the aluminum concentrations of the most effluents were in the range of 0.005~0.030 mg/L, which was too low to compare. The manganese concentration in the treated water were in the range of 3~9 mg/L, not following any regular trend. As found in the results of iron concentration, the case of addition of oxidation and sludge return steps showed higher efficiency than the others. As a standpoint of the installation of full-scale physicochemical treatment facility, the experimental results showed that the batch of oxidation and high density sludge return processes are existed and neutralization was followed by oxidation, had a stable treatment efficiency.

Effect of button mushroom compost on mobilization of heavy metals by sunflower

  • Kyeong, Ki-Cheon;Kim, Yong-Gyun;Lee, Chan-Jung;Lee, Byung-Eui;Lee, Heon-Hak;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 2014
  • The potential ability of Button mushroom compost (BMC) to solubilize heavy metals was estimated with metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strains in BMC were isolated for investigating the mobilization of metals in soil or plant by the strains and identified according to 16S rRNA gene sequence analysis. When metal solubilization potential of BMC was assessed in a batch experiment, the BMC was found to be capable of solubilizing metals in the presence of metals (Co, Pb and Zn) and the results showed that inoculation of BMC could increase the concentrations of water soluble Co, Pb and Cd by 35, 25 and 45% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 27, 25 and 28% respectively in Co, Pb and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction of Co, Pb and Zn from contaminated soils.

Enrichment of Ammonia-Oxidizing Bacteria for Efficient Nitrification of Wastewater

  • KIM WON-KYOUNG;CUI RONG;JAHNG DEOKJIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.772-779
    • /
    • 2005
  • Ammonia-oxidizing bacteria (AOB) were enriched by repeating fed-batch cultivations in an AOB-selective medium of activated sludges from a domestic wastewater treatment plant. Enriched culture showed strong capabilities of ammonia oxidation [0.810 mg $NH_4^+$-N/mg mixed liquor suspended solids (MLSS)$\cdot$day] as well as $NO_x^-$-N production (0.617 mg $NO_x^-$-N/ mg MLSS$\cdot$day). Degree of enrichment was examined through fluorescent in situ hybridization (FISH) analyses using an AOB-specific Cy3-labeled oligonucleotide probe (NSOl90) and terminal-restriction fragment length polymorphism (T-RFLP) analyses. FISH analyses confirmed that the fraction of AOB among 4',6-diamidino-2-phenylindole (DAPI)-stained cells increased from about less than $0.001\%$ to approximately $42\%$ after enrichment of AOB, and T-RFLP analyses showed that bacterial community became simpler as enrichment was continued. When the enriched culture of AOB was added (150 mg/l as dry suspended solid) to the normal activated sludge (3,000 mg/l as dry suspended solid), nitrification efficiencies were improved from 0.020 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.041 mg $NO_x^-$-N/mg MLSS$\cdot$day in a synthetic wastewater and also from 0.0007 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.0918 mg $NO_x^-$-N/mg MLSS$\cdot$day in a real domestic wastewater. Therefore, it is expected that this enrichment method could be used for improving efficiency of nitrification in wastewater treatment plants.