• Title/Summary/Keyword: Batch Plant

Search Result 264, Processing Time 0.019 seconds

Study on the Combined Treatment of Municipal Leachate and Sewage by Sequencing Batch Reactor. (연속회분식활성슬러지공법을 이용한 매립지 침출수와 하수의 병합처리에 관한 연구)

  • 이병인;이상혁
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 1993
  • An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4~8.1, BOD 280~450 mg/l, COD 1300 ~ 1350 mg/l, T-N 2021 ~2110 mg/1,7-P 2.7 ~3.2 mg/l, Cl-3540 ~4085 mg/l, and heavy metals are a very small amount. And the characteristics of sewage Ivere pH 6.9~7.3, BOD 78.4~129.3 mg/1, COD 121.2~305.0 mg/l, T-N 14.9~36.4 mg/l, T-P 1.3 ~5.9 mg/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal serfage. 3) The various contents of the leachate were 5%, 10%, and 50% and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage.

  • PDF

Continuous Production of Natural Colorant, Betacyanin, by Beta vulgaris L. Hairy Root

  • Kim, Sun-Hee;Ahn, Sang-Wook;Bai, Dong-Kyu;Kim, Kwang-Soo;Hwang, Baik;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.716-721
    • /
    • 1999
  • It has been known that continuous cultivation of hairy root is difficult to maintain for a long period of time compared to the microbial and callus cultures. Chemostat cultivation was successfully carried out in order to economically produce a plant-based colorant, betacyanin, from red beet hairy root for more than 85 days in a 14-1 fermentor. The result from the chemostat cultivation was compared to those of the batch and fed-batch cultivations of red beet hairy roots. It was shown that hairy root reached its steady state within 50 days of the cultivation, and then maintained for about 25-30 days in a wide range of dilution rates. Total betacyanin production from the continuous process was also calculated to be 2.65g at 0.28(l/d) of dilution rate, compared to 0.196g from fed-batch cultivation. It was found that betacyanin production was a partially growth related process, yielding 0.376 mg/g-fresh wt. cell and $1.89{\times}10^{-5}$ mg/g-fresh wt. cell/d, with 0.92 of correlation factor in a partial growth-product model. It was also shown that the cell growth required was relatively large for maintenance amount of energy at a low dilution rate. The growth of hairy root was inhibited by high light intensity in following a photo-inhibition model. The growth parameters were estimated to be 0.3(l/d), $10.56kcal/\textrm{m}^2/h$,{\;}and{\;}35.81kcal/\textrm{m}^2/h$ for the maximum specific growth rate, half saturation light intensity, and inhibition light intensity, respectively.

  • PDF

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Study on maximization and demonstration of biogas production in an anaerobic digester using a microbial agent (미생물제재를 이용한 혐기성소화조 바이오가스 생산 극대화와 실증화에 관한 연구)

  • Bae, Sang-Dae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.179-183
    • /
    • 2018
  • Recently, several studies have been conducted on biogas and organic compost production using food waste in an anaerobic digester. In this study, basic experiments were conducted to produce biogas and compost by fermenting food wastes with microbial agents. First, a microbial agent was developed by combining various microorganisms. Then, the amount of generated biogas was identified through a food waste batch experiment. Further, we could maximize and demonstrate biogas production in an anaerobic digester by examining biogas production and composting in a pilot plant.

Production of Hydrogen Sulfide Gas from Sediments in Concrete Sewer (하수관내 침전물의 황화수소가스 발생에 관한 연구)

  • Cho, Sun-Hyoung;Ko, Young-Song;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.83-91
    • /
    • 1996
  • The pulverized wastes originated from kitchen garbage grinder cause an additional load in sewage treatment plant and water environment. Therefore, several problems occur in sewer, such as microbial corrosion, odor, psychoda and fly interrupting flow of sewage etc. by their precipitation with earth and sand. This study was conducted on two experiments: hydrogen sulfide gas generation from sediments in sewer and anaerobic batch test. In anaerobic batch test, gas generation was increased when organic compounds were increased in concentration. Sulfide was decreased upon decreasing in sulfate concentration. In $H_2S$ gas generation test along the depth of sediments there were two different sampling sites which are apart from about 50 cm each other in a menhole. The one has the thickness of 55 cm from the surface, the other, of 60 cm. The hydrogen sulfide gas production rates were measured based on ranges from 0 to 10 cm, 10 to 20 cm, 20 to 30 cm for two samples. The results obtained were 1.08, between 0 to 10 cm in depth for the sample thickness of 55 cm and 3.07, 5.36, $5.42{\mu}g/g-VS{\cdot}hr$ in order of depth for the sample thickness of 60 cm, respectively.

  • PDF

Adsorption and Leaching Characteristics of the Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 흡착 및 용출 특성)

  • 윤춘경;김선주;임융호;정일민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.77-84
    • /
    • 1998
  • Adsorption and leaching characteristics of the artificial soils produced from water and wastewater treatment sludges were examined. The batch adsorption test and TCLP leaching test were used, and constituents of interest were heavy metals and nutrients. As, Cr, Cu, Pb, and Cd were analyzed for metals, and nitrogen and phosphorus were analyzed for nutrients. All the artificial soils showed strong adsorption and low leaching for the heavy metals, which implies that the artificial soils may not be hazardous to the environment due to heavy metals and even they can be utilized effectively to remove metals in solution like mine and industrial wastewaters. This is quite promising result because in most case heavy metals are the most concern in the application of sludge product to the farmland. For the nutrients, generally, artificial soils showed high adsorption and low leaching except artificial soil from wastewater sludge produced by low temperature firing. The artificial soils produced from water treatment sludge were active in adsorbing nutrients and showed low leaching that they can be practically used to remove nutrients in advanced treatment process of the wastewater. The artificial soils produced from wastewater treatment sludge were less active in adsorbing nutrients and showed high teaching. However, they could be used usefully if applied properly to the plant growing because of their fertilizing effect. Based on the test results, overall, the artificial soils were thought to be not hazardous to the environment and they could be more useful if applied properly.

  • PDF

Detection of Equipment Faults at Sequencing Batch Reactor Using Dynamic Time Warping (동적시간와핑을 이용한 연속회분식 반응기의 장비고장 감지)

  • Kim, Yejin
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.525-534
    • /
    • 2016
  • The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.

Dyeing Protein Fiber to Green Color Using Natural Mugwort and Indigo (천연 쑥과 쪽을 이용한 단백질 섬유의 녹색 염색)

  • Yoo, Hye-Ja
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.4
    • /
    • pp.53-59
    • /
    • 2007
  • We need to diversify the colors by natural dyeing for promotion and extention of the natural dyes market, because natural dyestuffs have the limitation the number of the colors to express, compare to synthetic dyestuffs. It was investigated that wool and silk fabrics could be dyed to green colors using natural mugwort and indigo as one of color diversification, in order to express green color that is difficult to be shown by natural dyeing. The mugwort dyebath was prepared to concentration of $25{\sim}100g/l$ using dried mugwort plant and indigo dyebath was prepared to concentration of $5{\sim}20g/l$ using natural indigo powder. Wool fabrics and silk fabrics were dyed to green(GY, G, BG in Munsell color wheel) by two batch methods using the mugwort and indigo dyebaths. the mugwort dyeing was applied at $80^{\circ}C$ for 20minutes and indigo dyeing applied for $5{\sim}7$ minutes in room temperature. The colorfastness to drycleaning and abrasion of the dyed fabrics were shown good as grade 4-5 or 5.

Treatment of the Wastewater of High Surfactant Concentration by GAC GAC Adsorption (GAC에 의한 고농도 계면활성제 폐수의 흡착처리)

  • Kim, Hag-Seong;Lee, Jin-Phil;Han, Hoon-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 1999
  • For a cosmetic plant wastewater containing surfactants of high concentration, adsorption treatment by granular activated carbon(GAC) having different pore size distribution was studied. Three sorts GACs were used and regenerated afterwards with methanol. Experiments were composed of batch process and column test for both virgin and regenerated GACs. Following conclusions were drawn from the study: Methylene blue activating substance(MBAS) adsorption data from the batch tests for three GACs are described well by BET isotherm and Freundich isotherm. Simulation with the BET isotherm shows that maximum adsorption appears to be affected not only by specific surface area but also by pore size distribution. Maximum adsorption from the BET isotherm for MBAS appears to diminish as the number of reactivation increases. The diminishing ratio of maximum adsorption appears to decrease as the pore size decreases. Recovery ratio of the methanol by vacuum evaporation from the spent methanol ranges from 95% to 97%.

Speculation on the Identity of Bacteria Named TFOs Occurring in the Inefficient P-Removal Phase of a Biological Phosphorus Removal System

  • Lee, Young-Ok;Ahn, Chang-Hoon;Park, Jae-Kwang
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • To better understand the ecology of tetrade forming organisms (TFOs) floating in a large amount of dairy wastewater treatment plant (WWTP) effluent (sequencing batch reactor [SBR]) during the inefficient phosphorus (P) removal process of an enhanced biological P removal system, the TFOs from the effluent of a full scale WWTP were separated and attempts made to culture the TFOs in presence/absence of oxygen. The intact TFOs only grew aerobically in the form of unicellular short-rods. Furthermore, to identify the intact TFOs and unicellular short-rods the DNAs of both were extracted, analyzed using their denaturing gradient gel electrophoresis (DGGE)-profiles and then sequenced. The TFOs and unicellular short-rods exhibited the same banding pattern in their DGGE-profiles, and those sequencing data resulted in their identification as Acinetobacter sp. The intact TFOs appeared in clumps and packages of tetrade cells, and were identified as Acinetobacter sp., which are known as strict aerobes and efficient P-removers. The thick layer of extracellular polymeric substance surrounding Acinetobacter sp. may inhibit phosphate uptake, and the cell morphology of TFOs might subsequently be connected with their survival strategy under the anaerobic regime of the SBR system.