• Title/Summary/Keyword: Batch Learning Method

Search Result 48, Processing Time 0.027 seconds

Feasibility Study of Google's Teachable Machine in Diagnosis of Tooth-Marked Tongue

  • Jeong, Hyunja
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.206-212
    • /
    • 2020
  • Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.

A Study on Realtime Intrusion Detection System (실시간 침입탐지 시스템에 관한 연구)

  • Kim, Byoung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 2005
  • Applying artificial intelligence, machine learning and data mining techniques to intrusion detection system are increasing. But most of researches are focused on improving the performance of classifier. These classifiers are performed by batch way and it is not proper method for realtime intrusion detection system. We propose an incremental feature extraction and classification technique for realtime intrusion detection system. Applying proposed system to KDD CUP 99 data, experimental result shows that it has similar capability compared to batch way intrusion detection system.

Animal Face Classification using Dual Deep Convolutional Neural Network

  • Khan, Rafiul Hasan;Kang, Kyung-Won;Lim, Seon-Ja;Youn, Sung-Dae;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.525-538
    • /
    • 2020
  • A practical animal face classification system that classifies animals in image and video data is considered as a pivotal topic in machine learning. In this research, we are proposing a novel method of fully connected dual Deep Convolutional Neural Network (DCNN), which extracts and analyzes image features on a large scale. With the inclusion of the state of the art Batch Normalization layer and Exponential Linear Unit (ELU) layer, our proposed DCNN has gained the capability of analyzing a large amount of dataset as well as extracting more features than before. For this research, we have built our dataset containing ten thousand animal faces of ten animal classes and a dual DCNN. The significance of our network is that it has four sets of convolutional functions that work laterally with each other. We used a relatively small amount of batch size and a large number of iteration to mitigate overfitting during the training session. We have also used image augmentation to vary the shapes of the training images for the better learning process. The results demonstrate that, with an accuracy rate of 92.0%, the proposed DCNN outruns its counterparts while causing less computing costs.

A Study of a Method for Maintaining Accuracy Uniformity When Using Long-tailed Dataset (불균형 데이터세트 학습에서 정확도 균일화를 위한 학습 방법에 관한 연구)

  • Geun-pyo Park;XinYu Piao;Jong-Kook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.585-587
    • /
    • 2023
  • Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.

Cluster-Based Selection of Diverse Query Examples for Active Learning (능동적 학습을 위한 군집화 기반의 다양한 복수 문의 예제 선정 방법)

  • Kang, Jae-Ho;Ryu, Kwang-Ryel;Kwon, Hyuk-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.169-189
    • /
    • 2005
  • In order to derive a better classifier with a limited number of training examples, active teaming alternately repeats the querying stage fur category labeling and the subsequent learning stage fur rebuilding the calssifier with the newly expanded training set. To relieve the user from the burden of labeling, especially in an on-line environment, it is important to minimize the number of querying steps as well as the total number of query examples. We can derive a good classifier in a small number of querying steps by using only a small number of examples if we can select multiple of diverse, representative, and ambiguous examples to present to the user at each querying step. In this paper, we propose a cluster-based batch query selection method which can select diverse, representative, and highly ambiguous examples for efficient active learning. Experiments with various text data sets have shown that our method can derive a better classifier than other methods which only take into account the ambiguity as the criterion to select multiple query examples.

  • PDF

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

A Study on the Analysis Method of Artificial Intelligence for Real-Time Data Prediction. (실시간 데이터 예측을 위한 인공지능 분석 방법 연구)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.547-549
    • /
    • 2021
  • In Artificial Intelligence analysis, the process of creating a model and verifying it is a task that requires computational processing time because it is Batch Processing performed with already generated data. We need to model, validate, and predict real-time data, such as stocks and defense information, with data generated directly in front of us. As a solution to this, we solve it by applying techniques to segment the data required for artificial intelligence modeling tasks in order of time processing and distribute the data across multiple processes.

  • PDF

(Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection) (물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출)

  • Kim, Nuri;Lee, Donghoon;Oh, Songhwai
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.668-673
    • /
    • 2017
  • Deep neural networks have shown remarkable performance in various fields of pattern recognition such as voice recognition, image recognition and object detection. However, underlying mechanisms of the network have not been fully revealed. In this paper, we focused on empirical analysis of the network parameters. The Faster R-CNN(region-based convolutional neural network) was used as a baseline network of our work and three important parameters were analyzed: the dropout ratio which prevents the overfitting of the neural network, the size of the anchor boxes and the activation function. We also compared the performance of dropout and batch normalization. The network performed favorably when the dropout ratio was 0.3 and the size of the anchor box had not shown notable relation to the performance of the network. The result showed that batch normalization can't entirely substitute the dropout method. The used leaky ReLU(rectified linear unit) with a negative domain slope of 0.02 showed comparably good performance.

Prediction of Jamming Techniques by Using LSTM (LSTM을 이용한 재밍 기법 예측)

  • Lee, Gyeong-Hoon;Jo, Jeil;Park, Cheong Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.278-286
    • /
    • 2019
  • Conventional methods for selecting jamming techniques in electronic warfare are based on libraries in which a list of jamming techniques for radar signals is recorded. However, the choice of jamming techniques by the library is limited when modified signals are received. In this paper, we propose a method to predict the jamming technique for radar signals by using deep learning methods. Long short-term memory(LSTM) is a deep running method which is effective for learning the time dependent relationship in sequential data. In order to determine the optimal LSTM model structure for jamming technique prediction, we test the learning parameter values that should be selected, such as the number of LSTM layers, the number of fully-connected layers, optimization methods, the size of the mini batch, and dropout ratio. Experimental results demonstrate the competent performance of the LSTM model in predicting the jamming technique for radar signals.

Comparison of incremental learning method and batch learning method in Cyber ISR (사이버 ISR에서의 점진적 학습 방법과 일괄 학습 방법 비교)

  • Shin, Gyeong-Il;Yooun, Hosang;Shin, DongIl;Shin, DongKyoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.861-864
    • /
    • 2017
  • 사이버 ISR을 통하여 정보를 획득하는 과정에서 데이터를 추출하고 이를 스스로 가공하여 의사결정에 도움을 줄 수 있는 에이전트를 연구하는 과정에서 폐쇄망에 침투했을 경우 이를 효과적으로 감시 정찰할 수 있는 방법을 논의한다. 폐쇄망으로 인하여 침투한 컴퓨터에 심어진 에이전트는 C&C서버와 원활한 교류가 불가능하게 되는데, 이때 스스로 살아남아 지속적으로 데이터를 수집하며, 분석을 하기 위해서는 한정된 자원과 시간을 활용하여야 발각되지 않고 계속하여 임무를 수행할 수 있다. 특히 분석하는 과정에서 많은 자원과 시간을 활용하는 때 이를 해결하기 위해 본인은 점진적 학습방법을 이용하는 것을 제안하며, 일괄학습 방법과 함께 비교하는 실험을 해보았다.