• 제목/요약/키워드: Basolateral membrane

검색결과 39건 처리시간 0.03초

신장 피질 기저막 소포에서 p-Aminohippurate 이동의 특성에 대한 연구 -음이온의 효과- (Characteristics of p-Aminohippurate (PAH) Transport in Basolateral Membrane Vesicles of Rabbit Kidney Cortex -Effect of Anion-)

  • 이상호;정진섭;김용근
    • The Korean Journal of Physiology
    • /
    • 제20권2호
    • /
    • pp.225-235
    • /
    • 1986
  • 가토 근위세뇨관에서 Percoll gradient에 의해 분리한 기저막소포(basolateral membrane vesicle)에서 PAH 이동에 미치는 여러 음이온들의 영향을 rapid filtration technique을 이용하여 관찰하였다. NA-dependent PAH 축적은 용액내 $SO_4$$SSO_3$에 의하여 유의하게 억제되었으나 $Cl,\;SCN,\;HPO_4,\;acetate$ 및 oxalate에 의해서는 영향을 받지 않았다. 용액내의 $SO_4$는 상경적으로 PHA 이동을 억제하였다. 소포내 음이온을 부하시킨 후 PAH 이동을 측정했을 때 $acetate,\;SO_4$ 및 PAH의 부하에 의해 PAH 이동은 유의하게 증가되었으며, 소포내 부하되는 $SO_4$농도가 증가함에 따라 PAH 축적은 증가되었다. $SO_4$에 의한 PAH의 trans-stimulation은 Na 농도 경사 존재시 더욱 증가되었으며 이들은 2 mM probenecid 및 1mM SITS에 의해 억제되었다. 이들 결과들은 신피질세뇨관 세포의 기저막에 PAH/음이온 교환에 의해 PAH가 이동되는 기전이 존재한다는 것을 가르킨다. 그러나 PAH 이동에 영향이 없는 음이온들은 PAH/음이온 교환에 기질로써 작용하지 않기 때문인지 아니면 이들 음이온들의 높은 투과성에 인해 나타난 결과인지는 더욱 추구해 보아야 확인될 것으로 생각된다.

  • PDF

폐상피세포 장벽에 대한 $H_2O_2$의 영향 (Effect of $H_2O_2$ on Alveolar Epithelial Barrier Properties)

  • 서덕준;조세헌;강창운
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권3호
    • /
    • pp.236-249
    • /
    • 1993
  • 연구배경 : 정상 폐상피세포에서는 항상 생성되고 있는 활성산소(oxygen radical)에 의한 유해작용에 노출되어 있고, 이들 유해 산소들은 폐기종과 같은 폐질환의 원인 기전으로 생각되고 있다. 본 연구에서는 이 방법을 이용하여 만든 폐상피세포 단일막에서 전기생리학적인 관점에서 물질의 이동지표인 short-circuit current(Isc)와 조직저항(R)에 대한 활성산소의 하나인 $H_2O_2$(hydrogen peroxide)가 어떤 영향을 미치는지를 연구함으로서 세포생리학적 기전을 구명하고자 한다. 방법 : Tissue culture-treated polycarbonant membrane filter 에서 배양시킨 쥐 제 2 형 폐상피세포 배양 단일막에서 $H_2O_2$의 능동적 이온 이동 (Isc) 과 수동적 용질이동에 대한 조직저항(R)에 미치는 효과를 관찰하였다. 배양 제 3 일과 제 4 일째 단일막을 수정된 Ussing chamber에 설치하고 막 양측에 HEPES-buffered Ringer 용액으로 incubation 하였다. 외부에서 0~100 mM 농도의 $H_2O_2$를 apical 또는 basolateral side에 작용시켜 Isc와 R의 변화를 관찰하였다. 폐상피세포 장벽이 외부의 $H_2O_2$에 대하여 방어작용을 가지는 세포내 catalase 활성도를 측정하고, catalase 억제제인 aminotriazol(ATAZ) 20 mM의 효과도 함께 관찰하였다. 결과 : 이 단일막은 형태학적으로 보아서 in vivo 에서의 포유류 제 1 형 폐상피세포 장벽의 특성을 나타내고 세포들 사이는 tight junction을 이루며(조직저항 R: 2,000 ohm-$cm^2$ 이상) sodium ion의 능동적 이동 (Isc: 5 ${\mu}A/cm^2$)을 보였다. $H_2O_2$는 dose-dependent 양식으로 Isc와 R 모두 감소시켰다. Apical side에 작용하는 $H_2O_2$에 있어서는 60분에 50% 억제하는 농도인 $ED_{50}$는 Isc와 R은 약 4mM 이었으나 basolateral side의 경우는 약 0.04mM 로서 그 작용 강도는 apical에 비하여 약 100배 정도 더 컸다. ATAZ 존재시 apical side의 $ED_{50}$는 0.4mM로 감소하였으나 basolateral side의 경우 변화가 없었다. $H_2O_2$의 제거율은 apical 또는 basolateral side 어느 쪽에 존재하든 같았으며, 세포내 catalase 활성도는세포배양기간이 길어짐에 따라 증가함을 보였다. 결론 : 이상의 실험결과는 basolateral side에 작용하는 $H_2O_2$는 세포내 막구성성분 중 basolateral 측에 존재하는 곳에(예, $Na^+,\;K^+$-APTase) 직접 장애를 미칠 것으로 생각된다. 한편 apical side에 작용하는 $H_2O_2$는 막성분에 도달하기 전에 세포내에 존재하는 catalase에 의하여 대부분 그 작용을 잃게 된다. 결론적으로 Isc와 R로 측정된 폐상피세포 장벽의 특성은 $H_2O_2$에 의하여 손상을 받고 apical side 보다는 basolateral side 측정이 더 손상을 잘 받게 된다.

  • PDF

신장근위곡세뇨관 막소포를 이용한 신장독성 실험모델 개발 (Development of a Novel Experimental Model for Nephrotoxicity Assessment Using Membrane Vesicles of Rabbit Renal Proximal Tubules)

  • 이영재;이창업;이문한;성하정;류판동
    • 한국식품위생안전성학회지
    • /
    • 제8권4호
    • /
    • pp.195-204
    • /
    • 1993
  • Basolateral and brush border membrane (BLM and BBM) vesicles of renal proximal tubules were prepared from adult male New Zealand White rabbits to evaluate as a potential model for assessment of nephrotoxicity. PAH uptakes using BLMV, glucose and leucine uptakes using BBMV were measured in the rabbits treated cephaloridine. In addition, urinalysis and histopathological studies were performed to investigate the correlationship with membrane vesicle uptakes. The results were as follows: (1) the activite of Na+, K+ -ATPase was enriched 12.3-fold in vasolateral memvrane vesicles (BLMV) and the specific activity of alkaline phosphatase in purified brush border memvrane vesicles (BBMV) was enriched 10.1-fold compared with each of microsomal homogenate. (2) In the uptake experiments, cephaloridine decreased initial and probenecid-sensitive PAH uptakes in BLMV. (3) Cephaloridine tested decreased initial and phlorizin-sensitive glucose uptakes in BBMV. (4) Cephaloridine tested decreased initial and Na+-dependent leucine uptakes in BBMV. (5) Cephaloridine tested significantly increased the urinary excretion of glucose and activity of ${\gamma}$-GTP. (6) Cephaloridine tested caused moderate necrotic changes in renal tubular cells and formation of urinary cast in the lumina of Henle's loop and collecting tubules besides the swelling of renal tubules.

  • PDF

Transepithelial Transport of Organic Cation and Its Inhibition by Sulfhydryl and Carboxyl Reagents in Opossum Kidney Cell Monolayer

  • Woo, Jae-Suk;Oh, Se-Ok;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • 제30권1호
    • /
    • pp.53-62
    • /
    • 1996
  • Transepithelial transport of tetraethylammonium (TEA) was studied in monolayers of opossum kidney cells cultured on permeable membrane filters. $[^{14}C]-TEA$ was transported across the OK cell monolayer from basolateral to apical side by a saturable process which can be stimulated by acidification of the apical medium. The apparent Michaelis-Menten constant $(K_{m})$ and the maximum velocity$(V_{max})$ for the transport were $41\;{\mu}M$ and 147 pmole/ mg protein/ min, respectively. The transport was significantly inhibited by unlabelled TEA, amiloride, cimetidine, choline, and mepiperphenidol added to the basolateral side at 1 mM and was slightly inhibited by 5 mM $N_{1}-methylnicotinamide\;(NMN).$ Unlabelled TEA added to the apical side stimulated the $basolateral-to-apical\;{^{14}C}-TEA$ transport, suggesting that the TEA self-exchange mechanism was involved at the apical membrane. Sulfhydryl reagents such as ${\rho}-chloromercuribenzoic\;acid\;(PCMB)\;and \;{\rho}-chloro-mercuribenzene\;sulfonate \;(PCMBS)$ and carboxyl reagents such as N,N'-dicyclohexylcarbodiimidem (DCCD) and N-ethoxy-carbonyl-2-ethoxy-1,2-dihydro-quinoline(EEDQ) inhibited the TEA transport at both the basolateral and apical membranes of the OK cell monolayer. These results suggest that OK cell monolayers possess a vectorial transport system for organic cations which is similar to that for organic cation secretion in the renal proximal tubule.

  • PDF

가토 신피질 절편에서 Uric Acid 이동 (Accumulation of Uric Acid in Rabbit Kidney Cortical Slices)

  • 이성태;임채준;우재석;김용근
    • The Korean Journal of Physiology
    • /
    • 제21권2호
    • /
    • pp.283-289
    • /
    • 1987
  • Uric acid transport across the basolateral membrane of renal proximal tubules was studied in rabbit kidney cortical slices. Uric acid uptake was greater under $O_2$ atmosphere compared to under $N_2$ atmosphere, and was increased with $Na^{2+}$ concentration in incubation medium. Uric acid inhibited PAH uptake but not TEA uptake and did trans-stimulated PAH efflux. PAH also inhibited uric acid uptake. Uric acid uptake was inhibited by harmaline, ouabin, SITS, DIDS and pyrazinoic acid. The inhibition of PAH uptake by these inhibitors also was reasonably comparable to that of uric acid uptake. These results suggest that uric acid was transported across the basolateral membrane of renal tubule by a carrier-mediated process which was by a common transport system with PAH in rabbit.

  • PDF

P2 Receptor-mediated Inhibition of Vasopressin-stimulated Fluid Transport and cAMP Responses in AQP2-transfected MDCK Cells

  • Kim, Yang-Hoo;Choi, Young-Jin;Bae, Hae-Rahn;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2009
  • We cultured canine kidney(MDCK) cells stably expressing aquaporin-2(AQP2) on collagen-coated permeable membrane filters and examined the effect of extracellular ATP on arginine vasopressin(AVP)-stimulated fluid transport and cAMP production. Exposure of cell monolayers to basolateral AVP resulted in stimulation of apical to basolateral net fluid transport driven by osmotic gradient which was formed by addition of 500 mM mannitol to basolateral bathing solution. Pre-exposure of the basolateral surface of cell monolayers to ATP(100 ${\mu}M$) for 30 min significantly inhibited the AVP-stimulated net fluid transport. In these cells, AVP-stimulated cAMP production was suppressed as well. Profile of the effects of different nucleotides suggested that the $P2Y_2$ receptor is involved in the action of ATP. ATP inhibited the effect of isoproterenol as well, but not that of forskolin to stimulate cAMP production. The inhibitory effect of ATP on AVP-stimulated fluid movement was attenuated by a protein kinase C inhibitor, calphostin C or pertussis toxin. These results suggest that prolonged activation of the P2 receptors inhibits AVP-stimulated fluid transport and cAMP responses in AQP2 transfected MDCK cells. Depressed responsiveness of the adenylyl cyclase by PKC-mediated modification of the pertussis-toxin sensitive $G_i$ protein seems to be the underlyihng mechanism.

Reabsorption of Neutral Amino Acids Mediated by Amino Acid Transporter LAT2 and TAT1 in The Basolateral Membrane of Proximal Tubule

  • Park Sun Young;Kim Jong-Keun;Kim In Jin;Choi Bong Kyu;Jung Kyu Yong;Lee Seoul;Park Kyung Jin;Chairoungdua Arthit;Kanai Yoshikatsu;Endou Hitoshi;Kim Do Kyung
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.421-432
    • /
    • 2005
  • In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

랫트의 신장 근위곡세뇨관 현탁액을 이용한 Cephaloridine의 신장독성 평가 (Nephrotoxicity Assessment of Cephaloridine using Rat Renal Proximal Tubule Suspension)

  • 홍충만;장동덕;신동환;최진영;조재천;이문한
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.103-108
    • /
    • 1995
  • Rat renal proximal tubule suspension was prepared from adult male Sprague Dawley rat (250-300g) by mechanical (non-enzymatical) method and evaluated as a pontential model for mechanistic studies and early screening of nephrotoxicity, using anionic antibiotics (cephaloridine). Cephaloridine (CPL) produced an increase in LDH release into media. This release results from decrease a proximal tubule cell viability and subsequently increase the permeability of cell viability and subsequently increase the permeability of cell membrane. Since loss of intracellular potassium and ATP into media is the sign of disruption of cell membrane, especially basolateral membrane (BLM), CPL induced proximal tubule cell compromise also appear be associated with BLM, maybe $Na^+-K^+$ ATPase. Also seen was significant depression in brush border membrane (BBM) ALP activity and no significantly increase in BBM GGT activities. The inhibition of typical anion, PAH accumulation (especially, CPL 5 mM) and cation, TEA (especially, 4hours incubation) were seen dose dependently. This is because of CPL accumulation in renal proximal tubule and increase of cytotoxicity.

  • PDF

Molecular Mechanism of Pancreatic Bicarbonate Secretion

  • Lee, Min-Goo;Kim, Je-Woo;Kim, Kyung-Hwan;Muallem, Shmuel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권3호
    • /
    • pp.131-138
    • /
    • 2002
  • Thanks to recent progress in availability of molecular and functional techniques it became possible to search for the basic molecular and cellular processes that mediate and control $HCO_3{^-}$ and fluid secretion by the pancreatic duct. The coordinated action of various transporters on the luminal and basolateral membranes of polarized epithelial cells mediates the transepithelial $HCO_3{^-}$ transport, which involves $HCO_3{^-}$ absorption in the resting state and $HCO_3{^-}$ secretion in the stimulated state. The overall process of HCO3 secretion can be divided into two steps. First, $HCO_3{^-}$ in the blood enters the ductal epithelial cells across the basolateral membrane either by simple diffusion in the forms of $CO_2$ and $H_2O$ or by the action of an $Na^+-coupled$ transporter, a $Na^+-HCO_3$ cotranporter (NBC) identified as pNBC1. Subsequently, the cells secrete $HCO_3{^-}$ to the luminal space using at least two $HCO_3{^-}$ exit mechanisms at the luminal membrane. One of the critical transporters needed for all forms of $HCO_3{^-}$ secretion across the luminal membrane is the cystic fibrosis transmembrane conductance regulator (CFTR). In the resting state the pancreatic duct, and probably other $HCO_3{^-}$ secretory epithelia, absorb $HCO_3{^-}.$ Interestingly, CFTR also control this mechanism. In this review, we discuss recent progress in understanding epithelial $HCO_3{^-}$ transport, in particular the nature of the luminal transporters and their regulation by CFTR.

Sorting of the Human Folate Receptor in MDCK Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, P.C.
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.362-369
    • /
    • 2004
  • The human folate receptor (hFR) is a glycosylphosphatidylinositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.