• Title/Summary/Keyword: Basis function

Search Result 2,799, Processing Time 0.031 seconds

RBF Network Structure for Prediction of Non-linear, Non-stationary Time Series (비선형, 비정상 시계열 예측을 위한 RBF(Radial Basis Function) 회로망 구조)

  • Kim, Sang-Hwan;Lee, Jong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.168-175
    • /
    • 1999
  • In this paper, a modified RBF(Radial Basis Function) network structure is suggested for the prediction of a time-series with non-linear, non-stationary characteristics. Coventional RBF network predicting time series by using past outputs sense the trajectory of the time series and react when there exists strong relation between input and hidden activation function's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden activation functions are modified to react to the increments of input variable and multiplied by increment(or dectement) for prediction. When the suggested structure is applied to prediction of Macyey-Glass chaotic time series, Lorenz equation, and Rossler equation, improved performances are obtained.

  • PDF

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

An Adaptive Neural Network Control Method for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2341-2344
    • /
    • 2001
  • In recent years the neural network known as a sort of the intelligent control strategy is used as a powerful tool for designing control system since it has learning ability. But it is difficult for neural network controllers to guarantee the stability of control systems. In this paper we try connecting a radial basis function network to an adaptive control strategy. Radial basis function networks are simpler and easier to handle than multilayer perceptrons. We use the radial basis function network to generate control input signals that are similar to the control inputs of adaptive control using linear reparameterization of the robot manipulator. We adopt the saturation function as an auxiliary controller. This paper also proves mathematically the stability of the control system under the existence of disturbances and modeling errors.

  • PDF

Radial Basis Functions Networks Decision Feedback Equalizer with Competitive Learning (경쟁학습을 갖는 Radial Basis Function Networks 결정 궤한 등화기)

  • 서창우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.13-16
    • /
    • 1997
  • 본 논문에서는 Bayesian 결정 이론을 이용한 기존의 Radial Basis Function Networks 이되는 출력층에서 선형 조합되는 것과는 다른 형태의 방법을 제안하고자 한다. 제안하고자 하는 방법은 은닉층의 출력값과 가중치와의 곱해진 값이 출력층의 입력으로 들어오는데 이들 입력신호를 경쟁을 통하여 가장 큰 값만을 출력신호 인정하는 방법이다. 이런 경우에 파라미터 갱신을 할 때도 모든 가중치를 다 갱신하는 것이 아니라 출력되는 은닉층에 연결된 가중치만을 갱신하게된다. 이렇게 할 경우 계산량 감소뿐만 아니라 학습시간을 단축할 수 있다는 장점이 있다. 그리고 제안한 방법을 이용할 경우 비선형 분류문제에서도 우수한 성능결과를 확인 할 수 있었으며 기존의 RBFN rhk Wiener Filter와 성능을 비교하였다.

  • PDF

Identification of System from Generalized Orthogonal Basis Function Expansions

  • Bae, Chul-Min;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.1-26
    • /
    • 2001
  • In this paper, we will expand and generalize the orthogonal functions as basis functions for dynamical system representations. The orthogonal functions can be considered as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions, and give rise to an alternative series expansion of rational transfer functions. It is shown row we can exploit these generalized basis functions to increase the speed of convergence in a series expansion. The set of Kautz functions is discussed in detail and, using the power-series equivalence, the truncation error is obtained. And so we will present the influence of noises to use Kautz function on the identification accuracy.

  • PDF

An Adaptive Control Method of Robot Manipulators using RBFN (RBFN을 이용한 로봇 매니퓰레이터의 적응제어 방법)

  • 이민중;최영규;박진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.420-420
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators The structure of the proposed controller consists of a RBFN and VSC-1 ike control. RBFN is used in order to approximate かon system, and VSC-like control to guarantee robustness On the basis of the Lyapunov stability theorem, we guarantee the stability for the total system. And the learning law of RBFN is established by the Lyapunov method, Finally, we apply the proposed controller to tracking control for a 2 link SCARA type robot manipulator.

  • PDF

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF

Relation between Multidimensional Linear Interpolation and Regularization Networks

  • 엄경식;민병구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.89-95
    • /
    • 1997
  • This paper examines the relation between multidimensional linear interpolation (MDI) and regularization net-works, and shows that an MDI is a special form of regularization networks. For this purpose we propose a triangular basis function(TBF) network. Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF