• Title/Summary/Keyword: Basin type

Search Result 411, Processing Time 0.024 seconds

Development of a Hierarchical HydroG-OneFlow Web Services of River GeoSpatial Information (하천공간정보의 계층적 HydroG-OneFlow 웹서비스 개발)

  • Shin, Hyung Jin;Hwang, Eui Ho;Chae, Hyo Sok;Hong, Sung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.626-626
    • /
    • 2015
  • 본 연구에서는 하천공간정보의 웹서비스를 위해 SOAP(Simple Object Access Protocol) API 및 REST(Representation State Transfer) API로 제공하는 HydroG-OneFlow 웹서비스를 개발하였다. HydroG-OneFlow는 GML 기반의 서비스를 제공하며 GetBasin, GetGeoVariable 및 GetData 등의 기본서비스로 구성된다. GML은 GIS S/W의 벡터 GML 포맷과 공간정보 오픈플랫폼 서비스인 브이월드 데이터 API에서 제공하는 GML 포맷을 참고하여 하천공간 벡터정보를 제공할 수 있도록 GML을 구성하였다. GDM 공간 데이터에 대한 벡터정보 ML 수용 수준을 향상시킬 수 있도록 벡터구조의 점, 선, 면 정보에 대하여 GML의 PointPropertyType, CurvePropertyType, SurfacePropertyType을 도입하였다. 또한 일반적인 공간자료에서는 Multi 객체에 대한 지원도 필요하다. 현 GDM 데이터베이스에서도 OGC 표준의 MultiPoint, MultiLineString, MultiPolygon을 지원하고 있다. 이를 위하여 GML의 상응 요소인MultiPointPropertyType, MultiCurvePropertyType, MultiSurfacePropertyType을 하천공간정보 벡터 스키마에 도입하여 활용하였다. 클라이언트 서버 통신은 메시지 교환프로토콜인 SOAP을 사용하여 서버의 객체를 직접 호출하여 이루어진다. 서버는 서버의 제공 서비스를 WSDL(Web Service Description Language)를 통하여 게시하고 클라이언트는 이 기준(Criteria)을 참고하여 접근한다. GetData의 경우 Type(GRID or VECTOR), GDM(Geospatial Data Model) 여부(true or false), LayerName, BasinID, GenTime을 인자로 받아 GeoData에서 검색된 정보를 반환한다. SOAP버전은 1.1과 1.2를 지원하여 접근하는 클라이언트에서 선택할 수 있도록 개발하였다.

  • PDF

Development of a GIUH Model Based on River Fractal Characteristics (하천의 프랙탈 특성을 고려한 지형학적 순간단위도 개발(I))

  • Hong, Il-Pyo;Go, Jae-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.565-577
    • /
    • 1999
  • The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin.

  • PDF

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Sedimentary Facies and Processes in the Ulleung Basin and Southern East Sea (동해남부해역과 울릉분지의 퇴적상과 퇴적작용)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.160-166
    • /
    • 2007
  • The coarse deposit with a lower mud content adjacent to the shelf of the southern East Sea is probably a "relict" sediment deposited in response to a lower stand of sea level during the Pleistocene. The sediment that developed on the slope and in the deep sea was river-borne primarily and was secondarily reworked or redistributed by the Tsushima Warm Current from the East China Sea. The clay mineralogy of the area suggests various sources of fine-grained sediment from adjacent rivers, the Korea Strait, volcanic material from Ulleung Island, and the Japan coast. Massive sand, bioturbated mud, homogeneous mud, and laminated mud were the dominant facies found in the core sediments from the study area. The massive sand was mainly volcanic ash from an eruption on Ulleung Island (9300 yr BP) and consisted of colorless pumiceous glass and a black scoriaceous type. The sedimentation rates on the slope, based on the Ulleung-Oki ash layer, were about 10cm/ky higher than in the basin. Other than the coarse-grain sediment, the mean size of the fine sediment dominating the bioturbated and homogeneous muds in the basin and the laminated mud on the slope was 6-10 phi. This indicates a difference in the major sedimentary process: hemipelagic sedimentation in the Ulleung Basin and mass flow deposition, such as turbidite, on the slope of the southern East Sea.

Seismic Sequence Stratigraphy in the Southwestern Margin of the Ulleung Basin, East Sea (울릉분지 남서연변부의 탄성파 시퀀스 층서분석)

  • CHOI Dong-Lim
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.1-7
    • /
    • 1998
  • A multichannel seismic profile from the southwestern margin of the Ulleung Basin, East Sea, was analysed in detail to interpret the middle to late Miocene sequence stratigraphic evolution of the area. A regressive package is overlying a transgressive package which, in turn, is underlain by older uplifted and deformed sedimentary layers. A prominent condensed section separates the regressive and transgressive packages. The transgressive package is characterized by onlapping onto the underlying uplifted and deformed strata. The regressive package contains six prograding sequences composed of seismically resolvable lowstand, highstand, and transgressive systems tracts. Most of the depositional sequences comprise lowstand systems tracts consisting of basin-floor fan, slope fan, and prograding complex. Potential reservoirs in the regressive package are turbidite sands in basin-floor fans, channel-fill sands and overbank sand sheets in slope fans, and incised valley-fill sands in the shelf. The shallow marine sands in transgressive packages are another type of reservoir. Detailed sequence stratigraphic analysis, seismic data reprocessing, and 3-D seismic survey are suggested for the successful hydrocarbon exploration in the study area.

  • PDF

Evaluation of Biodiversity Based on Changes of Spatial Scale -A Case Study of Baekdudaegan Area in Kangwondo- (공간스케일 변화에 따른 생물다양성 평가 -강원도 백두대간 보호구역을 대상으로-)

  • Sim, Woodam;Park, Jinwoo;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.91-100
    • /
    • 2014
  • This research was conducted on the conservation area of Baekdudaegan, Kangwondo under the purpose of evaluating bio-diversity according to the changes of spatial scale, using GIS data and spatial filtering method. The diversity index was calculated based on the information of species of The $5^{th}$ forest type map using Shannon-weaver index (H'), evenness index ($E_i$) and richness index ($R_i$). The diversity index was analyzed and compared according to the changes of 12 spatial scales from Kernel size $3{\times}3$ to $73{\times}73$ and basin unit. As for H' and $R_i$, spatial scale increased as diversity index decreased, while $E_i$ decreases gradually. H' and $R_i$ was highest; each 1.1 and 0.6, when the Kernel size was $73{\times}73$, while $E_i$ was 0.2, the lowest. When you look at according to the basin unit, for large basin unit, 'YeongDong' region shows higher diversity index than 'YeongSeo' region. For middle basin unit, 'Gangneung Namdaecheon' region, and for small basin unit, 'Gangneung Namdaecheon' and 'Gangneung Ohbongdaem' region shows high diversity index. When you look at the relationship between diversity index and Geographic factors, H' shows positive relation to curvature and sunshine factor while shows negative to elevation, slope, hillshade, and wetness index. Also $E_i$ was similar to the relationship between H' and Geographic factor. Meanwhile, $R_i$ shows positive relationship to curvature and sunshine factor, while negative to elevation, slope, hillshade, and wetness index. macro unit diversity index evaluation was possible through the GIS data and spatial filtering, and it can be a good source for local biosphere conservation policy making.

Kerogen Facies of the Cretaceous Black Shales from the Angola Basin (DSDP Site 530), South Atlantic (앙골라분지 백악기 흑색셰일의 유기물상)

  • 박영수
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.87-104
    • /
    • 1987
  • The middle Cretaceous stratigraphec section of Deep Sea Drilling Project (DSDP) Site 530 in the Angola Basin is characterized by cyclic interbeds of organic-carbon-rich black shales and organic-carbon-poor red and green claystones, namely the black shale sequence. A number of samples from the black shale sequence were analyzed for the typesand distribution of insoluble sedimentary organic matter(kerogen) in order to give more information on the depositional conditions of the black shales in the Angola Basin. The dominant type of kerogen in the black shale sequence at Site 530 is amorphous organic matter mainly of marine planktonic algal origin. It probably consists of remains of some unfossiliqed dinoflagellates. The cyclic preservation of organic-carbon-rich black shales in the Angola Basin during the mid-Cretaceous could be explained by the low dissolved-oxygen concentration in the warm, saline deep and bottom waters combined with the sluggish circulation within the highly restricted basin, and the periodic high productivity in the surface waters.

  • PDF

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

Integrated stratigraphic approach for enhancing the efficiency of domestic resources exploration and development (국내 자원 탐사 및 개발의 효율성 증대를 위한 통합 층서적 접근)

  • Ryu In-Chang
    • The Korean Journal of Petroleum Geology
    • /
    • v.9 no.1_2 s.10
    • /
    • pp.24-39
    • /
    • 2001
  • Prospecting for energy and mineral resources is essential kind of public fundamentals that manage the nation's economy. Most explorations in the past were concentrated in the simple structural traps in relatively shallow depth. Due to their vast exploitation, recent history has shown that the emphasis in explorations has steadily shifted toward the subtle stratigraphic traps in deeper level. Increasing exploration for the subtle stratigraphic traps in deeper level requires precise correlation and assessment of deeply buried strata in the basin. However, the descriptive stratigraphic principles used for evaluation of the simple structural traps are limited to delineate the subtle stratigraphic traps in deeper depth. As this occurs, it is imperative to establish a new stratigrtaphic paradigm that allows a more sophisticated understanding on the basin stratigraphy. This study provides an exemplary application of integrated stratigraphic approach to defining basin stratigraphy of the Middle Ordovician Taebacksan Basin and the Cretaceous South Yellow Sea Basin, Korea. The integrated stratigraphic approach gives much better insight to unravel the stratigraphic response to tectonic evolution of the basins, which can be utilized for enhancing the efficiency of resources exploration and development in the basins. Thus, the integrated stratigraphic approach should be considered as a new stratigraphic norm that can improve the probability of success in any type of resources exploration and development project.

  • PDF