• Title/Summary/Keyword: Basin Zone

Search Result 296, Processing Time 0.029 seconds

Composition and Structure of Macrofouling Communities on Ocean-going Ships in the Far East Sea Basin

  • Moshchenko, Alexander V.;Zvyagintsev, Alexander Y.
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2001
  • Species composition and community structure of the fouling found on the hulls of 28 ships traveling through 6 main shipping routes (SR)in the Far East Sea Basin were analyzed using statistical methods. Samples obtained during 1976-1990 expeditions of the Institute of Marine Biology were used for the analyses. These samples were taken from the ships anchored in the harbor by SCUBA diving and in dry-docks of the Vladivostok ship-repairing yard. Similar composition of the fouling communities occurred on the ships travelling the same SR. In five cases, fouling was dominated by different Cirripedia communities. And, in one case, a community of the mussel Mytilus trossulus was found. In most cases the results of the factor analyses showed extremely low level of the relationships among different animals and algal species in fouling communities. Each ocean-going ship had an original structure of the fouling. Spatially disconnected animal associations of tropical and boreal origin may simultaneously coexist at the same ship. This paper testified to the originality of the zone of anthropogenic substrata as a benthos concentrator in the pelagic regions of the world ocean. The fouling from different zones showed that each zone possesses peculiar features and regularities of the composition and relationships between organisms dwelling here.

  • PDF

Crustal structure of the Korean peninsula (한반도 지각 속도구조)

  • Kim, Ki-Young;Hong, Myung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.43-51
    • /
    • 2007
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting P-wave and S-wave first arrival times. The raypaths indicate several midcrust interfaces. The shallowest one is at the approximate depth of $2{\sim}3\;km$ with refraction velocities of approximately Vp=6.0 and Vs=3.5 km/s, respectively. The second one of $15{\sim}17\;km$ depth has refraction velocities of approximately Vp=7.1 and Vs=3.7 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting Vp of $7.8{\sim}8.1\;km/s$ and Vs of $4.2{\sim}4.6\;km/s$ along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at $6{\sim}7\;km$ depth under the Okchon fold belt and the Yeongnam massif, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin less than 4.2 km thick.

  • PDF

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

Geological Structures and Evolution of the Tertiary Chŏngja Basin, Southeastern Margin of the Korean Peninsula (울산군 강동면 제 3기 정자분지(亭子盆地)의 지질구조와 분지발달)

  • Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.65-80
    • /
    • 1994
  • The Tertiary $Ch{\check{o}}ngja$ basin is located in the southeastern coastal area of the Korean Peninsula. It is a lozenge shaped fault-bounded basin with circa $5{\times}5km$ areal extent, isolated from other Tertiary basins by the Cretaceous Ulsan Formation in-between. The northwestern boundary of the basin is a domino/listric type normal fault trending $N30^{\circ}E$, whereas its southwestern boundary is a dextral strike-slip fault (trending $N20^{\circ}W$) with a lateral offset of more than 1 km. The basin is bounded by the East Sea on the eastern margin. Basin-fills consist of extrusive volcanic rock (Tangsa Andesites) of Early Miocene (16~22 Ma in radiometric age), unconsolidated fluviatile conglomerate (Kangdong Formation) and shallow brackish-water sandstone ($Sinhy{\check{o}}n$ Formation). The latter yields abundant Vicarya-Anadara molluscan fossils of early Middle Miocene age. The Tertiary strata become younger toward the northwestern boundary-fault of the basin, showing a zonal distribution pattern parallel to the fault: the younger sedimentary formations occupy a narrow zone of 2 km width along the northwestern boundary-fault, whereas the older Tangsa Andesites underlie them unconformably in the eastern and southeastern portions of the basin. The strata in the basin, including the Tangsa Andesites, are tilted (about $20^{\circ}$) toward the northwestern boundary-fault Sedimentary strata thicken toward the boundary-fault, forming a wedge shaped half-graben structure. A number of small-scale syndepositional normal growth faults and graben structures are observed in the sedimentary strata. These extensional structures have the same trend as the normal northwestern boundary-fault which we interpret as a pull-apart detachment fault. These characteristics imply persistent extension during the basin evolution, caused by a NW-SE directed tensional force. The $Ch{\check{o}}ngja$ basin is, thus, a kind of syndepositional tectonic basin evolved in a strike-slip (pull-apart) regime. The latter was caused by a dextral simple shear associated with the NNW-SSE opening of the East Sea. In view of the fact that the normal growth faults do not cut through the uppermost portion of the youngest $Sinhy{\check{o}}n$ Formation, it is inferred that the tensional force came to be inactive in the early Middle Miocene. This is coincident in timing with the termination of the East Sea opening (15 Ma).

  • PDF

Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 까치-1공의 층서)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.473-490
    • /
    • 2007
  • Strata of the Kachi-1 well, Kunsan Basin, offshore western Korea, were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the well: Triassic, Late Jurassic-Early Cretaceous, Early Cretaceous, Late Cretaceous, and Middle Miocene units. Each unit represents a tectono-stratigraphic unit that provides time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of the Kunsan Basin. In the late Late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of these wrench faults until the Late Cretaceous caused a mega-shear in the basin, forming a large-scale pull-apart basin. However, in the Early Tertiary, the Indian Plate began to collide with the Eurasian Plate, forming a mega-suture zone. This orogenic event, namely the Himalayan Orogeny, continued by late Eocene and was probably responsible for initiation of right-lateral motion of the Tan-Lu fault system. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the Kunsan Basin. Thus, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin. After the Oligocene, the Kunsan Basin has maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basin.

Basin evolution and provenance of . sediments of the Cretaceous Poongam sedimentary Basin (백악기 풍암 퇴적분지의 생성 진화와 퇴적물 기원)

  • Cheong Dae kyo;Kim Kyung hee
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.28-34
    • /
    • 1999
  • The Cretaceous Poongam sedimentary Basin in Kangwon-do, Korea consists alluvial deposits of conglomerates, sandstones, mudstones or siltstones, and volcaniclastics. The Poongam Basin was formed as a fault margin sag or a transpressional basin developed along a strike-slip fault zone, and received huge amount of clastic sediments from the adjacent fault-scaip. It formed an aggrading alluvial fan system and a volcaniclast-supplied marginal lake environment, while tectonic activity and volcanism attenuated toward the end of basin formation. Following the Folk's classification, the sandstones of the Poongam Basin are identified as lithic wackes or feldspathic wackes. The areal and sequential variation of the mineral composition in the sandstones is not distinct. The results of K-Ar age dating from the intruding andesites, volcaniclastics and volcanic fragments in sedimentary rocks show a range of 70 Ma to 84 Ma. It suggests that volcarism occurred sequentially within a relatively short period as the pre-, syn-, and post-depositional events. It was the short period in the late Cretaceous that the basin had evolved i.e., the basin formation, the sediment input and fill, and the , intrusion and extrusion of volcanic rocks occurred. The Poongam sedimentary sequence is a typical tectonic-controlled coarse sedimentary facies which is texturally immature.

  • PDF

Geological Structures and Extension Mode of the Southwestern Part(Bomun Area) of the Miocene Pohang Basin, SE Korea (한반도 동남부 마이오세 포항분지 남서부(보문지역)의 지질구조와 확장형식)

  • Song, Cheol Woo;Kim, Min-Cheol;Lim, Hyewon;Son, Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.235-258
    • /
    • 2022
  • We interpreted the evolutionary history of the southwestern part of the Pohang Basin, the largest Miocene basin in the southeastern part of the Korean Peninsula, based on the detailed geological mapping and analysis of the geological structures. The southwestern part of the Pohang Basin can be divided into the Bomun Domain in the west and Ocheon Domain in the east by an NNE-trending horst-in-graben. These two domains have different geometries and deformation histories. The Bomun Domain was rarely deformed after the incipient extension of the basin, whereas the Ocheon Domain is an area where continued and overlapped deformations occurred after the basin fill deposition. Therefore, the Bomun Domain provides critical information on the initial extension mode of the Pohang Basin. The subsidence of the Bomun Domain was led by the zigzag-shaped western border fault that consists of NNE-striking normal and NNW-striking dextral strike-slip fault segments. This border fault is connected to the Yeonil Tectonic Line (YTL), a regional dextral principal displacement zone and the westernmost limit of Miocene crustal deformation in SE Korea. Therefore, it is interpreted that the Pohang Basin was initially extended in WNW-ESE direction as a transtensional fault-termination basin resulting from the movement of NNE-striking normal and/or oblique-slip faults formed as right-stepover in the northern termination of the YTL activated since approximately 17-16.5 Ma. As a result, an NNE-trending asymmetric graben or half-graben exhibiting an westward deepening of basin depth was formed in the Bomun Domain. Afterward, crustal extension and deformation were migrated to the east, including the Ocheon Domain.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

A Study on the Application of Regional Environmental Assessment to Small Area Development -The case of small area development in Hwasung-City, Gyunggi-Do- (소규모 개발사업에 대한 토환경영향성평가 적용에 관한 연구 - 경기도 화성시 소규모 개발 사례를 중심으로 -)

  • Oh, Seung Ryun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.619-630
    • /
    • 2009
  • The study area investigated in this research is Hwaseong city, Gyeonggi-Do where small scale development is currently in progress. For the last three years, we carried out the environmental and ecological assessment by using data from The Ministry of Environment and Han River Basin Environmental Office. Most of development works in Hwaseong city, Gyeonggi-Do are small scale developments which are related with factory and distribution complex based on individual laws and regulations. However, environmental and ecological assessment is not being sufficiently reflected beforehand. Especially, because the development takes place mainly in the outskirts of the city, the fine forest is continuously being damaged. We analyzed changes in green zone caused by the developments. As a result, the percentage of original green zone was decreasing while the percentage of artificial green zone was increasing. We should maintain the percentage of the original green zone in order to conserve natural environment. In the past three years, the damage of the DGN (Degree of Green Naturality, 7) area that has high conservative value was little, but, there was serious damage in the area of DGN 6. In order to conserve natural environment, political and institutional investigation should be seriously carried out for mitigation of environmental and ecological damages.

A Study on the Environmental Assessment for Regional-Based Green Area Conservation (지역단위 녹지 확보를 위한 환경성평가방안 연구)

  • Oh, Seung-Ryun;Kang, Seon-Hong;Lee, Chun-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.535-546
    • /
    • 2011
  • The study area investigated in this research is Hwaseong city, Gyeonggi-Do where small scale development is currently in progress. For the last three years, we carried out the environmental and ecological assessment by using data from The Ministry of Environment and Han River Basin Environmental Office. Most of development works in Hwaseong city, Gyeonggi-Do are small scale developments which are related with factory and distribution complex based on individual laws and regulations. However, environmental and ecological assessment is not being sufficiently reflected beforehand. Especially, because the development takes place mainly in the outskirts of the city, the fine forest is continuously being damaged. We analyzed changes in green zone area caused by the developments. As a result, the percentage of original green zone was decreasing while the percentage of artificial green zone was increasing. We should maintain the percentage of the original green zone in order to conserve natural environment. In the past three years, the damage of the DGN (Degree of Green Naturality) 7 area that has high conservative value was little, but, there was serious damage in the area of DGN 6. In order to conserve natural environment, political and institutional investigation should be seriously carried out for mitigation of environmental and ecological damages.