• Title/Summary/Keyword: Basin Experiment

Search Result 135, Processing Time 0.032 seconds

A study on the diatomaceous earth filtration of recycling basin supernatant in the water treatment plant

  • Shin, Dae-Yewn;Park, Young-Ho;Moon, Ok-Ran;Park, Hymg-Il;Chung, Kyung-Hoon;Chin-Surk ko
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.94-97
    • /
    • 2003
  • This study performed the research about the recycling basin supernatant by pre-coat filtration in the D water treatment plant at Gwangju. Choice the prompt conditions with diatomaceous earth filtration which makes contaminant reduced in the basin supernatant. Element disk of candle used in this experiment are pore size 10$\mu\textrm{m}$(R), 20$\mu\textrm{m}$(B) and 40$\mu\textrm{m}$(Y). Diatomaceous earth are cake pore size 3.5$\mu\textrm{m}$(A), 7$\mu\textrm{m}$(B) and 17$\mu\textrm{m}$(C). The filtrate concentrations were from 0.18 to 0.92$\mu\textrm{g}$/1 of Chlorophyll-a. And then, removal rate percentage were from 78.30 to 95.57(R-A). In addition SS 80%, CODMn32% COD 61%, T-N 10% and T-P 39% on the D water treatment plant. The R(40$\mu\textrm{m}$) C(17$\mu\textrm{m}$) process can be substituted of reusing the recycled water of recycling basin supernatant view of capacity and removal rate of filtrate.

  • PDF

Operating Characteristics of Two Stage Membrane Bioreactor (2단형 막분리 활성슬러지법(Two Stage MBR)의 운전 특성에 관한 고찰)

  • Park, Jae-Roh;Lim, Hyun-man;Kim, Eoung Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.141-150
    • /
    • 2002
  • Two-stage membrane bioreactor using submerged hollow fiber membrane was applied in laboratory scale to treat nitrogen and phosphorus of domestic wastewater. Alum as the flocculant and adsorbent was added into the anaerobic basin of two-stage membrane bioreactor and mixed liquid of aerabic basin was recycled to the anaerobic basin for the purpose of nitrogen removal. Experiment was carried out to find removal efficient of phosphorous and nitrogen components in the mixed liquid, and the stability of the permeate flux and pressure of two-stage membrane bioreactor. In case of alum was added as the flocculant and adsorbent into the anaerobic basin, soluble phosphorus removal efficient was relatively higher and total permeate resistance(Rtot) was more increased out nitrogen removal efficient was lower as the result of lack of alkalinity and insufficient nitrification process than the case of alum was not added.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

The Improvement of Flocculation Basin in Water Treatment Process (정수처리공정에서 플록형성지의 효율향상 연구)

  • Gang, Chang-Ho;Lee, Hyeon-Dong;Yu, Jae-O
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.231-240
    • /
    • 2001
  • The problem of the flocculation basin was induced by installing the pilot plant using tracer test at Yang-Duck water treatment plant in Pohang cite. The flocculation basin model downscaled as 1/20 was made of acryl and evaluated hydraulically by transforming the section of the effluent in the flocculation basin. The optimum section of the effluent was suggested and applied to the plant. The efficiency of the flocculation basin according to improvement was evaluated by the particle counter which can count the number of particles each size fraction. The results of this study are as follows : First, it was desirable to make the retention time as short as possible because the flow and the index value were similar regardless of the retention time. Second, after the modification in Yang-Duck water treatment plant, the problem of destruction of floe was improved and the plant was operated satisfactorily. The hydraulic experiment with tracer test can be applied to the performance evaluation as well as improvement of facility in unit process of existing water treatment plant. Additionally, it can be used to find a design factor in the new water treatment plant.

  • PDF

Studies on the Estimation of Catchment Eyapotranspiration by the Water Balance Method in the Geum River Basin, Korea (물 수지법에 의한 우리나라 하천유역(금강)의 계절(기)별 증발산량 추정에 관한 연구)

  • 엄병현;조진구;이문수;최수명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 1983
  • In Korea, the demand for water is increasing greatly due to Korea's raqid economic progress which is similar to Japan's. A correct estimation of the runoff factors is the question that must be settled first to establish the appropritae plans for water use and water resources. of these plans the estimation of catchment evapotranspiration for every river basin is the subject of the most importance. It is impossible theoretically to measure evapotranspiration directly, because it is an at mospheric translatory phenomenon. Many approaches have been devised to estimate evapotranspiration, but each of these methods estimates from information taken from a specified point, and these methods are considered incomplete for estimating catchment evapotranspiration. In this paper, the seasonal evapotranspiration estimating method that was proposed by Linsly and was applied in the Kamigamo exprimental basin (subjected to Kyoto Univ.) by Takase et al, was used for the Geum river which is the main river in Korea. Conclusion of experiment. 1) The average annual Ec in this river basin from 1966 to 1972 was 470mm. That is considered appropriate since the average value for the six other large river basin in korea was 485mm. 2) The Ec/Ep and Ec/Epm ratios were 0.43 and 0.52, respectively (Ec : estimated evapotranspiration by water balance method, Ep : average pan evaporation, Epm : evaporation by Penman method). The seasonal Ec/Ep ratios were : 0.4 in spring, 0.6 in summer, 0.4 in autumn and 0.2 in winter. These are rather small when compared to Japan's or England's. 3) The reason for this was that the precipitational difference in wet and dry seasons were greater, an there was not sufficient soil moisture harmonize with the evapotranspiration capacity in the dry season, and that evapotranspiration was small due to the numerous barren mountains.

  • PDF

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Accuracy Analysis of HEC-RAS for Unsteady Flow Simulation considering the Flow Pattern Variations over the Side-weir of Side-Weir Detention Basin (강변저류지 횡월류부의 흐름 형태 변화를 고려한 HEC-RAS의 하도 내 부정류 모의 정확도 분석)

  • Kim, Sanghyuk;Yoon, Byungman;Kim, Dongsu;Kim, Seojun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2016
  • Accurate quantitative assessment of flood control effect of side-weir detention basin as a flood countermeasure was highly required, in which one-dimensional HEC-RAS model has been widely utilized in practice. When the submerged overflow occurred particularly driven by limited storage capacity of a given detention basin, HEC-RAS model could not be sufficiently applicable by guaranteeing acceptable accuracy without reliable benchmark dataset. From this perspective, a dedicated unsteady experiment was planned and carried out to physically realize such submerged overflow for accommodating better accuracy. Subsequently, the experimental results were applied to validate and calibrate HEC-RAS unsteady modeling to provide flood control effect of the detention basin for various inflow scenarios. After following this procedure, the modelled results indicated that there appeared within -5% of difference in stage height and maximum 2.4% accuracy to assess the flood control effect, thereby ensuring the calibrated HEC-RAS unsteady model to be accurate with practically acceptable error range.

Design of Tidal Basin Using Automatically Controlled Manifold System (분기관의 자동제어를 통한 조석수조의 설계)

  • 전인식;오영민;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.327-334
    • /
    • 1994
  • The manifold designates a pipe system discharging or absorbing water through multiple holes installed along the finite length of the pipe. The proper design of the manifold requires the pre-analysis of the hydraulic characteristics such as system head and flow rate. head loss and hole discharges, etc. On the contrary to the general pipe systems. the head loss along the pipe is hardly quantified in an explicit way since it is complicately varied by the size and arrangement of the holes. In the present study, both energy and continuity equations are employed to analyze the hydraulic characteristics, constituting nonlinear simultaneous equations which are solved by Newton method. In addition, a hydraulic experiment utilizing the manifold system equipped with an automatically controlled valve is performed to reproduce model tide. The result shows that the manifold system can be effectively used in a tidal basin where water flow should be maintained uniformly over the basin width.

  • PDF