Studies on the Estimation of Catchment Eyapotranspiration by the Water Balance Method in the Geum River Basin, Korea

물 수지법에 의한 우리나라 하천유역(금강)의 계절(기)별 증발산량 추정에 관한 연구

  • Published : 1983.06.01

Abstract

In Korea, the demand for water is increasing greatly due to Korea's raqid economic progress which is similar to Japan's. A correct estimation of the runoff factors is the question that must be settled first to establish the appropritae plans for water use and water resources. of these plans the estimation of catchment evapotranspiration for every river basin is the subject of the most importance. It is impossible theoretically to measure evapotranspiration directly, because it is an at mospheric translatory phenomenon. Many approaches have been devised to estimate evapotranspiration, but each of these methods estimates from information taken from a specified point, and these methods are considered incomplete for estimating catchment evapotranspiration. In this paper, the seasonal evapotranspiration estimating method that was proposed by Linsly and was applied in the Kamigamo exprimental basin (subjected to Kyoto Univ.) by Takase et al, was used for the Geum river which is the main river in Korea. Conclusion of experiment. 1) The average annual Ec in this river basin from 1966 to 1972 was 470mm. That is considered appropriate since the average value for the six other large river basin in korea was 485mm. 2) The Ec/Ep and Ec/Epm ratios were 0.43 and 0.52, respectively (Ec : estimated evapotranspiration by water balance method, Ep : average pan evaporation, Epm : evaporation by Penman method). The seasonal Ec/Ep ratios were : 0.4 in spring, 0.6 in summer, 0.4 in autumn and 0.2 in winter. These are rather small when compared to Japan's or England's. 3) The reason for this was that the precipitational difference in wet and dry seasons were greater, an there was not sufficient soil moisture harmonize with the evapotranspiration capacity in the dry season, and that evapotranspiration was small due to the numerous barren mountains.

Keywords