• Title/Summary/Keyword: Basin Division

Search Result 550, Processing Time 0.026 seconds

Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads (수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.

The Analysis of Atmospheric Flow Field and Air Quality According to the High Level Ozone Case on Gwangyang Bay (광양만 권역에서의 고농도 오존 사례에 대한 기상 및 대기질 분석)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Leem, Heon-Ho;Song, Jae-Hwal
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.743-753
    • /
    • 2008
  • Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.

Depositional Processes of Fine-Grained Sediments and Foraminiferal Imprint of Estuarine Circulation by Summer Floods in Yoja Bay, Southern Coast of Korea

  • Lee, Yeon-Gyu;Jung, Kyu-Kui;Woo, Han-Jun;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.109-123
    • /
    • 2000
  • Depositional processes of fine-grained sediments were investigated on the basis of sediment transport vector analysis and identification of benthic foraminiferal assemblages in Yoja Bay, southern coast of Korea. The bay is a semi-enclosed embayment where extensive mud flats occur with a width up to about 4 km. Most surface sediments are poorly sorted (sorting values: 1.9-3.0 ${\phi}$) mud and silt (mean grain size: 6.0-8.7 ${\phi}$), except for the tidal inlets with basement rocks locally exposed. Grain-size distribution shows a fining tendency toward the basin center near the Yoja Island, implying a possible existence of turbidity maximum and relatively rapid settling of fine-grained sediments. The agglutinated foraminiferal taxa are dominant in the inner bay and decrease in abundance toward the mouth of the bay. Species diversities are higher in the outer bay, due to mixing of the offshore faunas with those of the bay. Four groups of benthic foraminiferal assemblages, identified by cluster analysis, represent the bay. Biofacies I and ll with relatively lower diversities are dominated by Ammobaculites exiguus and Ammonia beccarii, suggestive of influx of fresh water. In contrast, biofacies III and IV with relatively higher diversities include increased amounts of calcareous genus Elphidium and Quinquelocuzina, accounting for strong influence of sea water from the offshore. The fluvial discharge in summer floods appears to develop a bay-wide, clockwise lateral circulation in Yoja Bay, a typical of well-mixed estuaries. Accordingly, the foraminiferal assemblages of the surface sediments well show a sign of this circulation. The dominant inflow of the offshore water into the western part of the bay has resulted in more extensive muddy tidal flats compared to the eastern narrower counterpart.

  • PDF

Estimating Chlorophyll-a Concentration using Spectral Mixture Analysis from RapidEye Imagery in Nak-dong River Basin (RapidEye영상과 선형분광혼합화소분석 기법을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Lee, Hyuk;Nam, Gibeom;Kang, Taegu;Yoon, Seungjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.329-339
    • /
    • 2014
  • This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations ($R^2$) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with $R^2$ of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate Chlorophyll-a concentration using images which were acquired on period of low Chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members. This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated Chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.

Evaluation of Water Quality Goal and Load Allocation Achievement Ratio in Guem River Total Maximum Daily Loads for the 1st Phase (금강수계 1단계 수질오염총량관리제의 목표수질 및 할당부하량 달성도 평가)

  • Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.859-865
    • /
    • 2012
  • It is necessary to evaluate performances hitherto carried out in the management of Total Maximum Daily Loads (TMDLs) and to set up direction so that this system can be improved continuously in the future. This study was investigated load allocation achievement ratio, water quality goal achievement ratio and interrelation between water quality goal and load allocation for the first period (2004~2010). Load allocation achievement and BOD water quality goal achievement ratio were 50% and 73% in Guem River Basin, respectively. The main reason for excess of load allocation and shortfall of water quality goal were unfulfilled reduction plan and pollution sources increment. Therefore, it is necessary to develop enhanced pollution sources prediction method and make a list realizable reduction plan. 63% of the unit watershed was not interrelation between water quality goal and load allocation. The reason why water quality goal and load allocation had not correlation were water quality of upper unit watershed, increment of inflow quantity, effluent water quality of wastewater treatment plant affected the unit watershed, increment of inner productivity by algae, water quality deterioration during the specific period, river management flow, etc.

A Study on the Effect of Water Quality Improvement of a Storm Sewage by Detention Pond (저류지에 의한 우수의 수질개선 효과 연구)

  • Lee, Jong-Tae;Song, Chi-Heung;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.351-364
    • /
    • 2000
  • The effect of water quality improvement of combined sewage by detention pond has been studied. It is convinced that the pollutant load and peak flow through the combined sewer by first rainfall and runoff can be decreased by detention pond sited at the outlet of small basin. Hydraulic modeling of detention panel was performed for two cases of sedimentation pond and gravel contact pond. It has been recognized that it is more efficient to reduce the pollutant of combined sewage when the combined sewage is released alter a fixed detention time in the detention pond than it is released continuously without detention time. The gravel contact detention pond shows higher pollutant removal rate than the sedimentation detention pond in all pollutants. When it comes to gravel contact detention pond, the gravel pond filled with crushed gravel has a higher pollutant removal rate than that filled with river gravel.

  • PDF

A Study on the Reviesd Methods of Missing Rainfall Data for Real-time Forecasting Systems (실시간 예보 시스템을 위한 우량자료 보정 기법 연구)

  • Han, Myoung-Sun;Kim, Chung-Soo;Kim, Hyoung-Seop;Kim, Hwi-Rin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.131-139
    • /
    • 2009
  • The weather accidents by global warming effect are increasing rapidly whole world. Flood forcasting system and hydrological database are operated by almost all the countries in the world. An objective of this study is to research revised methods of missing rainfall data and find more effective revised method for this operating system. 194 rainfall data of the Han river basin is used. Arithmetic average method, coefficient of correlation weighting method and inverse distance weighting method are compared to estimate revised methods. The result from the analysis shows that coefficient of correlation weighting method is best quantitatively among the 3 methods.

Development of a Multi-Site Calibration Module of Distributed Model - The Case of GRM - (분포형 모형의 다지점 보정 모듈 개발 - GRM 모형을 중심으로 -)

  • Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.103-118
    • /
    • 2012
  • A distributed model can easily obtain discharge at any grids spatially distributed in a watershed. But if there are subwatersheds which have various characteristics in a watershed, it is needed to apply a model calibrated at each subwatershed to obtain reliable simulation results for each subwatershed. In this study, a multi-site calibration module that can calibrate a distributed model at each subwatershed using observed flow data was developed. Methods to select multi-site calibration parameters, to apply subwatershed parameters, and to set subwatershed network information are suggested. Classes to implement multi-site calibration technique are designed and a GUI was developed, and procedures for runoff modelling using subwatershed parameters were established. Multi-site calibration module was applied to Sunsan watershed($977km^2$) of Nakdong river basin. Application results showed that the multi-site calibration technique could be applied effectively to model the calibration for each subwatershed, and the simulation results of subwatershed were improved by the application of multi-site calibration.

Emission Characteristics of Greenhouse Gases (CH4, N2O) in Mechanically Ventilated Swine Farm during Winter Season (겨울철 강제환기식 돈사 내 온실가스 (CH4, N2O) 배출 특성 연구)

  • Park, Junyong;Jung, Minwoong;Jo, Gwanggon;Jang, Yu-Na
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • The emission characteristics and emission factors were determined by measuring the concentration of methane (CH4) and nitrous oxide (N2O), the amount of ventilation, etc. in the two fattening rooms which have the same environment in winter. As a result of monitoring, the average concentration of CH4 and N2O was 20.7-26.7 ppm and 1.4-1.6 ppm. The average temperature inside the room was measured at 20.0-21.4℃, and the average ventilation was 1345.4-1567.3 m3/h. The daily emission of CH4 for the first 30 days showed a constant emission of 3.6-8.2 g/d/m2/pig, but thereafter, the emission increased rapidly. The daily emission of N2O was 0.7-1.3 g/d/m2/pig, showing stable emission during the test period, and relatively insignificant emission compared to the emission of CH4. After repeated test, it was confirmed that there was no significant difference between the two rooms. As a result, the CH4 6. 21 g/d/m2/pig and N2O 1.02 g/d/m2/pig average emission for each room was derived.

Major Watershed Characteristics Influencing Spatial Variability of Stream TP Concentration in the Nakdong River Basin (낙동강 유역에서 하천 TP 농도의 공간적 변동성에 영향을 미치는 주요 유역특성)

  • Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2021
  • It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.