• Title/Summary/Keyword: Basin Area

Search Result 1,650, Processing Time 0.031 seconds

Development of Estimation Technique for Inundation Area by Frequency using GIS (GIS를 활용한 빈도별 침수구역 예측기법 개발)

  • Lee, Byongju;Choi, Cheulgwan;Kim, Yangsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.671-675
    • /
    • 2004
  • The objective of this study is to develope estimation techniques of flood inundation area for given rainfall frequency using GIS. For this, Namdae-cheon is selected as pilot station and Inundation area is estimated with routing of flood volume from river mouth to upstream. As a results inundation area of Namdae-cheon estimated with $1.5km^2\~9.7km^2$ for $5\~500$ frequency years. In addition it is noted that results of this study can use in flood risk analysis for establishment of flood countermeasures.

  • PDF

A Study of Optimal Water Supply Planning in Mountainous Area (산지유역에서의 최적용수공급방안에 관한 연구)

  • Kim, Ji-Hak;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.967-973
    • /
    • 2006
  • In this study used tank model and specific discharge to calculate low-flow of mountain basin and supply data that need in water resources plan. Low-flow is calculated byspecific discharge and area ratio method as resulted that calculate storage of low-flow by tank model was construed that showd all similar aspect. In judged to help in water resources plan establishment calculating low-flow using model to supplement uncertainty of observed data in that calculate of low-flow ungaged mountain area. It shows by economical and realistic plan until 12 years after development that run parallel and use economic performance analysis result valley flow and groundwater. But wide area water services and Chungju dam since 12 years onward was expose that is economic.

A Study on Mathematical Model for Water Quality Forecasting at Anyang Stream (안양시 관내하천 수질모형 예측에 관한 연구)

  • Kim, Gab-Jin;Lee, Yang-Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 1997
  • The Anyang stream is one of the Han river in Seoul Metropolitan area. It is 35.1km long, has a basin area of $282.26km^2$ and touches seven cities of Kyounggido and some of Seoul Metropolitan area. The situations of Anyang stream have resulted in severe stream water pollution problems. The purpose of this study were to measure the hydraulic characteristics and water quality, to make the countermeasures to achieve the stream water quality, to suggest the future conditions to improve water quality trough the Hydrodynamic and Water Quality Modal(WASP4). As the result of Anyang stream water quality forecsat, they are follows. Sewerage systems in the watershed of the Anyang stream have to be amended for wrong systemn and constructed in the upstream area of Anyang. The discharge of industrial wastewater has to be throughly controlled from the upstream area of the Anyang stream. Hydrodynamic and Water Quality Model(WASP4) for this study revealed the future water quality of the Anyang stream by computer simulation.

  • PDF

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

A Study on Distribution of Small Hydropower Resources Using GIS (지리정보시스템을 이용한 소수력자원 분포 연구)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.203-203
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 117 medium basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Established system of GIS small hydropower energy can be used gather basic information for positive applications of small hydropower energy nationwide.

  • PDF

A Study on Flash Flood Warning in Mountainous Area (산악지역 돌발홍수 경보발령 기준 설정에 관한 연구)

  • Jun, Kye-Won;Oh, Chae-Yeon;Yeon, Gyu-Bang;Lee, Seung-Chul;Jun, Byong-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.591-594
    • /
    • 2007
  • The purpose of this study is to estimate the critical flood discharge and flash flood trigger rainfall for alarm system providing for a flash flood in mountainous. This study was effectively estimated a topographic characteristic factor of basin using the GIS. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. Result that calculate threshold discharge to use GCIUH, at the Mureung valley basin, flash flood trigger rainfall was 16.34mm in the first 20 minutes when the threshold discharge was $14.54\;m^3/sec$.

  • PDF

Computation of Areal Reduction Factor and Its Regional Variability (면적우량환산계수의 산정과 그 지역적 변화)

  • Kim, Won;Yoon, Kang-Hoon
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.79-86
    • /
    • 1992
  • ARF(Areal Reduction Factor) have been developed and used to convert point I-D-F to areal I-D-F in many countries. In Korea, through ARF was calculated in Han river basin by several researchers, it has limit to apply to other regions \ulcorner 새 low density of rainfall gauge station and shortage of data. In this study ARF has developed in areas of high density of rainfall gauge station, Pyungchang river(han river), Wi stream(nakdong river), and Bochung stream(Guem river) basin by fixed-area method. And coefficient of variation of annual mean precipitation was presented to use ARF in othere areas and its applicability was analyzed.

  • PDF

Assessment of Leachate from Solid Waste Landfills in Daechong Lake Upper Drainage Basin (대청호 상류유역 매립지의 침출수 분석 및 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.161-170
    • /
    • 2003
  • To investigate the characteristics of 17 solid waste landfills in the upper drainage basin of Lake Daechong, the landfill sites were surveyed, the leachate of these landfills were analyzed, and the analysis results were assessed from standpoint of water contamination. Sanitary landfills which are now being operated are relatively well equipped with facilities such as leachate collection, daily soil cover and landfill gas treatment devices. But a few of open-dumping landfills were leaking leachate apparently and were supervised improperly and neglectfully by local governments. Some of sanitary landfills exceeded the COD permission criteria of leachate effluent, and some of open-dumping landfills exceeded SS, T-P, Pb, As, Fe, Mn permission criteria of leachate effluent. To improve the water quality of Lake Daechong which is utilized for supplying drinking water, agricultural water, and industrial water to the great part of Chungchong area, the adequate and prompt measures for preventing Daechong Lake water contamination from landfills leachate is necessary.

The Development of GIS-based Package Tool for Small Hydropower Resources Analysis (GIS기반 소수력자원 분석용 Package Tool 개발)

  • Park, Wan-Soon;Lee, Chul-Hyung;Heo, June-Ho;Jeong, Sang-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.668-671
    • /
    • 2009
  • This study seeks to develop a map of the domestic small hydropower(SHP) resources to further improve SHP resources, developed through package tool which can accurately evaluate a wide range of SHP basin in a short period of time. GIS-based package tool for SHP resources analysis was calculated using 840 standard basin classified by drainage area and facility capacity, etc., and to assume a 40% annual load factor, expected annual electricity production was calculated. SHP resources potential for the development of SHP will be utilized as basic data.

  • PDF

Estimation of Nonpoint Pollutant Loads in the Hwanggujichoen Basin using SWMM (SWMM을 이용한 황구지천유역의 비점원오염부하량 평가)

  • Cho, Jae-Heon;Cho, Nam-Heung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2003
  • Water pollution of Hwanggujicheon stream is severe because urban area of Suwon City is included in the basin. A countermeasure for water quality prevention of the stream is necessary. In this study, nonpoint pollutant load of BOD, SS, TN and TP are estimated using SWMM. The result indicates that BOD, SS, TN and TP loads during 3 months from July to September are 67.0%, 60.8%, 54.7% and 74.5% of the annual total load, respectively. We can see that most of nonpoint pollutant loads are generated in the rainy season. Annual nonpoint pollutant loads of BOD, SS, TN and TP in the Hwanggujicheon stream are 342 ton, 1,500 ton, 480 ton and 12.6 ton, respectively.