• Title/Summary/Keyword: Basic organic chemistry

Search Result 157, Processing Time 0.033 seconds

Quantitative Analysis of Trace pp'-DDE in Corn Oil by Isotope Dilution Mass Spectrometry : Uncertainty Evaluations

  • 김병주;김달호;최종오;소헌영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.910-916
    • /
    • 1999
  • A current interest in chemistry concerns traceability of analytical measurements to the International System of Units (SI) and the proper estimation of their uncertainties in accordance with the internationally agreed guide provided by the International Organization for Standardization (ISO). Isotope dilution mass spectrometry (IDMS) is regarded as a primary method, which make the measurement results traceable to SI units without significant empirical correction factors. Our laboratory, as the national standards institute of Korea, participated in an intercomparison of environmental analysis, pp'-DDE in corn oil, which was organized by the CCQM under supervision of the CIPM to test feasibility of IDMS as a primary method for the trace analysis of organic compounds. In this report, we provide basic equations used for the calculation of the concentration of the analyte in a sample and a precise description of the processes for the evaluation of the uncertainties of the measurement results. Also, we report the experimental conditions adopted to improve the accuracy of the IDMS measurement. The principles contained in ??Guide to the Expression of Uncertainty in Measurement'' provided by ISO are followed for the uncertainty evaluation.

One-pot Synthesis of CdS Nanoparticles by Using $Cd(SOCCH_3)_2Lut_2$ Precusor and Their Optical Characteristics ($Cd(SOCCH_3)_2Lut_2$를 이용한 CdS 나노입자의 용이한 합성 방법 및 광학적 특성)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.285-288
    • /
    • 2009
  • A synthetic route for 12 metal thiocarboxylate complex, $Cd(SOCCH_3)_2Lut_2$ [Lut = 3,5-dimethylpyridine (lutidine)], were investigated for their potential to act as precursors for the formation of cadmium sulfide nanoparticles. $Cd(SOCCH_3)_2Lut_2$ were characterized by 1H-NMR spectroscopy. Thermal decomposition of $Cd(SOCCH_3)_2Lut_2$ is expected to undergo thiocarboxylic anhydride elimination to give stoichiometric cadmium sulfide nanoparticles and removes the organic supporting ligands cleanly. Prepared cadmium sulfide nanoparticles were characterized by fluorescence and UV-vis absorption spectroscopy and displayed an emission band at 500 nm with an excitation wavelength of 360 nm.

  • PDF

Hydrosilylation of Photoluminescent Porous Silicon with Aromatic Molecules; Stabilization of Photoluminescence and Anti-photobleaching Properties of Surface-Passivated Luminescent Porous Silicon

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.147-154
    • /
    • 2021
  • A luminescent porous silicon sensor, whose surface was passivated with organic molecule via hydrosilylation under various conditions, has been researched to measure the photoluminescence (PL) stability of porous silicon (PSi). Photoluminescent PSi were synthesized by an electrochemical etching of n-type silicon wafer under the illumination with a 300 W tungsten filament bulb during the etching process. The PL of PSi displayed at 650 nm, which is due to the quantum confinement of silicon quantum dots in the PSi. To stabilized the photoluminescence of PSi, the hydrosilylation of PSi with silole molecule containg vinyl group was performed. Surface morphologies of fresh PSi and surface-modified PSi were obtained with a cold FE-SEM. Optical characterization of red photoluminescent silicon quantum dots was investigated by UV-vis and fluorescence spectrometer.

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Characteristics of Plasma Polymer Thin Films for Low-dielectric Application

  • Cho, S.J.;Boo, J.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.124-124
    • /
    • 2011
  • This study investigated the interaction of varied plasma power with ultralow-k toluene-tetraethoxysilane (TEOS) hybrid plasma polymer thin films, as well as changing electrical and mechanical properties. The hybrid thin films were deposited on silicon(100) substrates by plasma enhanced chemical vapor deposition (PECVD) system. Toluene and tetraethoxysilane were utilized as organic and inorganic precursors. In order to compare the electrical and the mechanical properties, we grew the hybrid thin films under various conditions such as rf power of plasma, bubbling ratio of TEOS to toluene, and post annealing temperature. The hybrid plasma polymer thin films were characterized by Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), nanoindenter, I-V curves, and capacitance. Also, the hybrid thin films were analyzed by using ellipsometry. The refractive indices varied with the RF power, the bubbling ratio of TEOS to toluene, and the annealing temperature. To analyze their trends of electrical and mechanical properties, the thin films were grown under conditions of various rf powers. The IR spectra showed them to have completely different chemical functionalities from the liquid toluene and TEOS precursors. Also, The SiO peak intensity increased with increasing TEOS bubbling ratio, and the -OH and the CO peak intensities decreased with increasing annealing temperature. The AFM images showed changing of surface roughness that depended on different deposition rf powers. An nanoindenter was used to measure the hardness and Young' modulus and showed that both these values increased as the deposition RF power increased; these values also changed with the bubbling ratio of TEOS to toluene and with the annealing temperature. From the field emission scanning electron microscopy (FE-SEM) results, the thickness of the thin films was determined before and after the annealing, with the thickness shrinkage (%) being measured by using SEM cross-sectional images.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries (리튬 이차전지용 고체전해질 개발 동향)

  • Suh, Soon-Sung;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.

Inhibition of Urea Hydrolysis and Nitrification in Upland Soils by Artemisia asiatica Extracts (쑥 추출물(抽出物)의 밭토양중(土壤中) 요소분해(尿素分解), 질산화(窒酸化) 작용(作用) 억제효과(抑制效果))

  • Lim, Sun-Uk;Shin, Myonug-Ho;Park, Hyun-Jun;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.392-399
    • /
    • 1998
  • Nitrogen fertilizers such as urea are readily hydrolyzed in soils to produce ammonium ions which pass through nitrification and denitrification processes. These serial processes have drawn attention due to nitrogen losses, eutrophication, blue baby syndrome, and ozone depletion problems. The purpose of this study was to test the inhibitory effects of hot-water extract and organic solvent fractions of Artemisia asiatica leaves on soil urea hydrolysis and nitrification. In addition, the effects of organic solvent fractions on urease activity and ureolytic bacterial population were also investigated. First, hot-water extract of Artemisia asiatica leaves inhibited soil nitrification substantially with a marginal stimulatory effect on soil urea hydrolysis. Soils treated with hot-water extract of Artemisia asiatica leaves showed significant decreases in the accumulation of soil $NO_3-N$ (~68% decrease) compared with the control soil without the treatment of hot-water extract. In contrast, $CHCl_3$/MeOH fraction and basic aqueous layer of Artemisia asiatica leaves inhibited soil urea hydrolysis very strongly, causing 5.8 and 4.3-fold higher accumulation in amounts of remaining urea-N compared with the non-treated soil. Meanwhile, non of the organic solvent fractions showed any significant effects on soil nitrification inhibition. The inhibition of ureolytic bacterial activity by $CHCl_3$/MeOH fraction and aqueous basic layer of Artemisia asiatica leaves without any effects on urease activity itself led us to conclude that the inhibitions of soil urea hydrolysis were caused by the antagonistic effects on ureolytic bacterial activity.

  • PDF

Analysis of Dioxins and Furans from Bottom Ash Produced in an Municipal Solid Waste Incinerator (도시 소각로 시설의 고형 쓰레기 연소 후 생성된 바닥재 시료에 대한 다이옥신과 퓨란류의 분석)

  • Chang, Yoon-Seok;Hong, JongKi;Kim, Jin-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.513-523
    • /
    • 1995
  • Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are the most concerned toxic organic pollutants to human. Because of their extremely high toxicity and uncertain genotoxic potential, their determination in environmental and biological samples is of great interest. Municipal solid waste incinerator facilities have been reported as the major contributors of dioxins and furans to the environment, and their formation from combustion is a universal phenomenon, everywhere. In this study dioxins and furans were analyzed from the bottom ash produced during combustion in an municipal waste incinerator located in Seoul. The EPA method was modified for sample pretreatment: the soxhlet method was used for extraction and clean-up procedures were performed by using silica and basic alumina, excluding active-carbon. The extract was then analyzed by HRGC/HRMS. A general trend of increase in the amounts of 6∼7 chlorine-substituted dioxins and furans was observed. Total dioxins, furans and 2,3,7,8-TCDD were determined as 8.05 ng/g, 4.75 ng/g, and 6.93 pg/g, respectively.

  • PDF

Optimization of extraction conditions of flavonoid compounds from Thyme (Thymus vulgaris Libiatae) (타임으로부터의 플라보노이드 화합물의 추출 조건 최적화)

  • Park, Yunjin;Lee, Jumi;In, Man-Jin;Chae, Hee Jeong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.111-116
    • /
    • 2020
  • Total polyphenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities of ethanol extracts of 20 herbal plants (sage, turmeric, mace, bayleaf, fenugreek, oregano, blackpepper, whitepepper, clove, marjoram, cinnamon, coriander, basil, dillseed, mustard, cadamon, thyme, celery, rosemary, cumin) were analyzed for the screening of high flavonoid-containing plant resource. Thyme extract, showing the highest flavonoid content and a high degree of antioxidant activity, was selected as a bioactive cosmetic material. The total polyphenols and flavonoids contents of thyme extracts were measured as 6.90 mg chlorogenic acid equivalent (CAE)/100 g and 1.71 mg naringin equivalent (NE)/100 g, respectively, and DPPH radical scavenging activities was 90%. Among the tested organic solvents, hexane gave the highest extraction yield. Thus hexane was selected as the most suitable solvent for the extraction of thyme. Response surface method was used to obtain optimized extraction conditions for thyme: reaction temperature of 35.9 ℃, raw material to hexane ratio of 1.63:25 (w/v), and reaction time of 192 min. These predicted extraction conditions was validated by a total flavonoid extraction experiment showing a value equivalent to 96.3% of the predicted total flavonoid content. It is expected that the optimized solvent extraction conditions could be used for the production of flavonoid using thyme.