• Title/Summary/Keyword: Basic organic chemistry

Search Result 157, Processing Time 0.023 seconds

Soil Physical and Hydraulic Properties over Terrace Adjacent Four Major Rivers

  • Lee, Kyo Suk;Lee, Jae Bong;Lee, Myoung Yun;Joo, Ri Na;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • The soil does not only serve as a medium for plant growth but also for engineering construction purposes. It is very weak in tension, very strong in compression and fails only by shearing. The behaviour of the soil under any form of loading and the interactions of the earth materials during and after any engineering construction work has a major influence on the success, economy and the safety of the work. Soils and their management have therefore become a broad social concern. A limitless variety of soil materials are encountered in both agronomy and engineering problems, varying from hard, dense, large pieces of rock through gravel, sand, silt and clay to organic deposits of soft compressible peat. All these materials may occur over a range of physical properties, such as water contents, texture, bulk density and strength of soils. Therefore, to deal properly with soils and soil materials in any case requires knowledge and understanding of these physical properties. The desired value of bulk density varies with the degree of stability required in construction. Bulk density is also used as an indicator of problems of root penetration,soil aeration and also water infiltration. This property is also used in foundation engineering problems. While not conforming to standard test procedures, this work attempts to add to the basic information on such important soil parameters as water content, bulk density.

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

Crystal and Molecular Structure of 12-(2-Methoxyphenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo [12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carbonitrile

  • Ganapathy, Jagadeesan;Damodharan, Kannan;Manickam, Bakthadoss;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.149-158
    • /
    • 2014
  • The crystal structure of the title compounds with both coumarin and sulfonamide moieties were examined. These two groups have very special for their pharmaceutical and medicinal properties have been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group $P2_1/c$ with unit cell dimension a=$8.5775(4){{\AA}$, b=$24.9943(13){\AA}$ and c=$13.7319(7){\AA}$ [alpha & gamma=$90^{\circ}$ beta=$103.558(2)^{\circ}$]. In the structure The S1 atom shows a distorted tetrahedral geometry, with O1-S1-O2 [$121.08(1)^{\circ}$] and N1-S1-C5 [$105.85(1)^{\circ}$] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect. The sum of bond angles around N1 ($354.9^{\circ}$) indicates that N1 is in $sp^2$ hybridization. The Pyridine ring adopts boat conformation and pyran rings adopt a sofa conformation. Crystal structure is stabilized by C-H...O intra molecular hydrogen bond interactions.

Ion-Pair Chromatography of Benzoic Acid and Its Derivatives on XAD-2 (XAD-2 지지체를 이용한 벤조산과 그 유도체들의 이온쌍 크로마토그래피에 관한 연구)

  • Kang, Sam-Woo;Ryu, Sam-Gon;Park, Young-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.176-184
    • /
    • 1984
  • Retention behavior of benzoic acid and its derivatives on XAD-2 in the alcoholic aqueous solution was investigated and separation was attempted. Retention was affected by the concentration and kinds of added organic solvents, the pH of the aqueous solution, the added $R_4N^+$ and the position and kinds of functional group in the sample molecules. Retention of sample acids in acidic conditions was due to mainly molecular adsorption on nonpolar XAD-2 surface and that in basic conditions was due to mainly ion-pair model. In these bases a mixed sample was separated in EtOH 20% aqueous solution at pH 8.50.

  • PDF

Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide

  • Kim, Young-Sang;In, Gyo;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1495-1500
    • /
    • 2003
  • Equilibria and applications of a synergistic extraction were studied for the determination of a trace lithium by using thenoyltrifluoroacetone (TTA) and trioctylphosphine oxide (TOPO) as ligands. Several equations were derived for the extraction of lithium into m-xylene as a phase of Li-TTA·mTOPO adduct. Distribution coefficients and extraction constant were determined together with a stability constant of the adduct. The adduct was quantitatively extracted from the basic solution of higher than pH 9 by shaking for 30 minutes. m-Xylene was selected as an optimum solvent by comparing the extraction efficiency among several kinds of organic solvents. The stability constant (${\Beta}_2$) for Li-TTA/2TOPO was 150 times higher than Li-TTA/TOPO. The distribution coefficient of Li-TTA/2TOPO into m-xylene was 9.12 and the logarithmic extraction constant (log $K_{ex}$) was 6.76. Trace lithium of sub-ppm level in seawater samples could be determined under modified conditions and a detection limit equivalent to 3 times standard deviation for background absorption was 0.42 ng/mL.

Calculating Soil Quality Index for Biomass Production Based on Soil Chemical Properties

  • Kim, Sung-Chul;Hong, Young Kyu;Lee, Sang Phil;Oh, Seung Min;Lim, Kyung Jae;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.56-64
    • /
    • 2017
  • Soil quality has been regarded as an important factor for maintaining sustainability of ecosystem. Main purpose of this research was i) to select minimum factor for predicting biomass, and ii) to calculate soil quality index for biomass according to soil chemical properties. Result showed that soil pH, electrical conductivity (EC), soil organic matter (SOM), cation exchange capacity (CEC), and available phosphorus are minimum data set for calculating biomass production in soil. Selected representative soil chemical properties were evaluated for soil quality index and rated from 1 to 5 (1 is the best for biomass production). Percentage of each grade in terms of biomass production in national wide was 14.52, 35.23, 33.03, 6.47, 10.75% respectively. Although, only soil chemical properties were evaluated for calculating optimum soil quality, result of this research can be useful to understand basic protocol of soil quality assessment in national wide.

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

Simultaneous Determination of Mercury and Arsenic by Reductive Vapor Generation-ICP-AES (환원 증기 발생법-유도결합 플라즈마 원자방출 분광계를 이용한 수은과 비소의 동시 분석법)

  • Shin, Hyung-Seon;Choi, Man-Sik;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.273-278
    • /
    • 1999
  • Simultaneous determination of mercury and arsenic has been studied by reductive vapor generation-ICP-AES. Samples were digested with a microwave digestion system and extracted with acids. Reductive vapor generation was carried out with 6N HCI and 2% $NaBH_4$. Detection limit of Hg and As are found to be 0.06 ppb and 0.08 ppb, respectively. Measured values of Hg and As in inorganic samples agree well with reference value of SRMs, but the recovery of As from organic samples is obtained approximately 80% of the reference values.

  • PDF

Laboratory Experiment: Synthesis and Characterization of 4-Methyl-N-(phenylacetyl)benzenesulfonamide through Cu(I)-Catalysis

  • Jung, Byunghyuck
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.187-190
    • /
    • 2018
  • A three-component coupling reaction of phenylacetylene, p-toluenesulfonyl azide, and water through copper catalysis is described to provide knowledge of spectroscopy and catalytic reactions and to introduce current research topics in organic chemistry for second-year undergraduate students. In the presence of stoichiometric amounts of phenylacetylene, p-toluenesulfonyl azide, and triethylamine, the reaction was performed with 4 mol% CuCl in water as the sole solvent and was completed in 1.5 h. A practical purification method and recrystallization of the crude reaction mixture resulted in the rapid isolation of the desired product with yields of 42~65%. Students characterized 4-methyl-N-(phenylacetyl)benzenesulfonamide by using melting-point determination, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. This experimental procedure and spectroscopic data analysis will serve as a platform for students to apply classroom knowledge in practical state-of-the-art research.