• Title/Summary/Keyword: Basic material system

Search Result 700, Processing Time 0.029 seconds

A study on SLA(Scanned Linear Array) Applications for Mobile Communication Units (이동통신 단말기용 SLA(Scanned Linear Array) 적용에 관한 연구)

  • 김인회;안원석;문현찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.275-278
    • /
    • 1998
  • In recent years, miniaturization has become the key factor in the development of mobile communication system. Portable communications and computing devices suffer from two conflicting requirements which are device size to be as small as possible and large, high resolution display. These problems can be solved by virtual display. Any display in which the user views an image through an optical system is a virtual display. It provides a display which is high resolution, appears large to the viewer and at the same time occupies little physical space. In this study, handhold units of mobile communication was investigated through use of the SLA(Scanned Linear Array). The basic SLA mechanism comprises a linear array of LED's, a magnifying lens, and a scan mirror. To optimize virtual image, we investigated optical system design and operating condition for each part.

  • PDF

A Basic Study on the constant Tension control with variable PID as a function of inertia moment in the winding roll System (면취기 시스템에 있어서 부하의 관성모멘트에 따른 가변 PID 일정 장력제어의 기초연구)

  • Heo, Jin;Jun, Hong-Bae;Kim, Chul-Han;Sa-Gong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.654-657
    • /
    • 2000
  • In the winding system, the constant tension control is too important. In this study, we've used a variable PID system as a function of a radius of winding roll. As a result, it was possible to measure a winding roll radius in the real time by making a mathematical model for measuring a winding roll radius. Finally, we've compared PID parameters as a function of winding roll radius after getting PID parameters in terms of the Ziegler & Nichols(ZN) method.

  • PDF

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Development and Implementation of Training Program for Information System Design Using Material Requirements Planning

  • Yamazaki, Tomoaki;Yin, Rui;Kawaguchi, Seisuke;Hayasaka, Hirotatsu;Matsumoto, Toshiyuki;Ichikizaki, Osamu;Kanazawa, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.255-265
    • /
    • 2012
  • Environments surrounding production sites have changed greatly in recent years. Accommodating environmental changes calls for the design and development of information systems that center on production lines. There is a need for a training program that teaches learners to understand the particulars of an operation and apply that knowledge to an information system. In this research, we used material requirements planning (MRP) as the subject for which basic skills are to be taught and developed an MRP exercise-based training program. The program is designed for 13 lectures of 90 minutes each, and it consists of MRP exercises, modeling methods to represent them, the use of a programming language for system development, and finally, evaluation of the exercises. Lecture materials are described in 505 lecture slides using Microsoft PowerPoint to allow visualization of topics through graphs and models. The developed training program was then delivered to 86 college students, and its results were measured through quizzes to verify educational effectiveness.

Analysis of Physical Performance, Hygiene and Safety of Silicone-Laminated Stretch Material (실리콘이 라미네이팅된 신축성 소재의 위생 및 안전성과 역학적 성능)

  • Kwon, Myoung-Sook;Jung, Gi-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.77-84
    • /
    • 2007
  • The purpose of this study was to investigate and to compare the performances of silicone laminated materials sold for swimming cap in market, to get the basic data for product development. We selected 4 specimens and tested their air permeability, waterproofness and breathability. We also tested the physical and mechanical properties of the specimens using KES system. Silicone-laminated material was not bursted on high hydraulic pressure since silicone membrane gave waterproofness while PU/Polyester substrate gave elasticity. It didn't have air permeability and breathability at all. Any toxic materials such as Formaldehyde, Deldrin, PCP, Amin, TDBPP were not detected in silicone-laminated material and other materials. Silicone-laminated material had higher stretchability with the low force but it had lower elastic recovery and shape stability comparing to PU laminated material. It had lower flexibility than PU laminated material. It had lower unrecoverable amount in shearing direction. Friction coefficient was higher in silicone-laminated material than PU laminated material due to its surface stickiness. It was compressed easily and its compression resiliency was higher with compared to PU laminated material.

High Speed Axial-gap BLDC Mtor Design (고속용 Axial-gap BLDC Motor 설계)

  • Kim, Young-Kwan;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.116-118
    • /
    • 1998
  • This paper describes a basic structure, analysis of characteristics and test method for high speed axial-gap BLDC motor. The newly designed axial-gap BLDC motor has 2-stator disks with 3-rotor disks and is easy to increase power capacity by increasing the numbers of stator/rotor disks. For high speed operating, the rotor is composed of light and strong strength material and has several separated magnets to reduce stress concentraction by centrifugal force.

  • PDF

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material

  • Lee, Jung Kyu;Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

Implementation of Real-time Integrated Platform for Producing Food Packaging Container

  • Kim, Chigon;Park, Jong-Youel;Park, Dea-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.194-200
    • /
    • 2021
  • This study proposes a plan to construct an integrated platform that reduces manufacturing costs and efficiently produce by integrating the systems of main producers, production subcontractors, and raw material subcontractors for the production of food packaging containers. The production plan of food packaging containers and raw materials is established in real time between the main producers, production subcontractors, and raw material subcontractors in consideration of the demand characteristics of each product. It establishes basic information that all processes from the production planning stage to the forwarding stage of the product are linked to each other. The progress of each producer of interlinked processes is shared in real-time to improve productivity and quality of food packaging containers and raw materials and reduce manufacturing costs. By monitoring the system of the main producer and the production subcontractor in real time, the production of food packaging containers is performed in a timely manner, thereby improving productivity. The application of the plan-do-check-action (PDCA) process, which includes planning, execution, evaluation and improvement in the production operation processes of the main producer, production subcontractor and raw material subcontractor, enables improved production compliance rate. The contents of the main producers, production subcontractors, and raw material subcontractors are managed in real time, then a converged production management system is established through the platform proposed in this study to ensure timely supply and demand of raw materials without delay in ordering.

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.