• 제목/요약/키워드: Basic fibroblast growth factor

검색결과 107건 처리시간 0.035초

Increase of Grb2 and Ras Proteins and Expression of Growth Factors in LPS Stimulated Odontoblast-like Dental Pulp Cells

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • 제43권1호
    • /
    • pp.27-33
    • /
    • 2013
  • Inflammatory cells express the inflammatory cytokines and growth factors induced by lipopolysaccharide (LPS). Odontoblasts are located at the pulp-dentin interface and extend their cell processes far into the dentin where they are the first cells to encounter microorganisms or their products. Therefore, this study examined the expression of some growth factors related to the signal pathway, such as growth factor receptor binding protein 2 (Grb2)-Ras in odontoblast-like dental pulp cells, after a treatment with LPS. After 60 minutes, the mRNA and protein expression levels of Grb2 and Ras were higher in the LPS-treated cells than in the control cells. The level of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNA expression was increased significantly to a level similar to that of Grb2 and Ras at 60 minutes. The platelet-derived growth factor-AA (PDGF-AA) mRNA level was expressed strongly in the odontoblast like dental pulp cells without an association with LPS stimulation. Scanning electron microscopy revealed many extensions of the cytoplasmic processes and the number of processes increased gradually at 30, 60 and 90 minutes after LPS stimulation. From these results VEGF and bFGF expression might be induced through the Grb2-Ras signal transduction pathway in LPS treated odontoblasts.

랫드 각막에서 bFGF(basic Fibroblast Growth Factor)로 유발시킨 신생혈관에 대한 $AS_2O_3$의 혈관신생 억제 효과 (Antiangiogenic Effect of $AS_2O_3$ on the New Vessels Induced by bFGF in the Rat Cornea)

  • 김용수;서강문
    • 한국임상수의학회지
    • /
    • 제18권4호
    • /
    • pp.324-328
    • /
    • 2001
  • This study was performed to evaluate the effects of $AS_2O_3$ upon antiangiogenesis in rat cornea, to examine it\`s possible application as an anticancer drug and to provide basic data for further studies of antiangiogenetic mechanism of $AS_2O_3$ . Angiogenesis was induced by cornea micropocket assay, as previously described. Sixteen of forty-eight eyes of Sprague-Dawley rats were randomly assigned to one of three groups, namely, only a bFGF group(control group), and a group treated by $AS_2O_3$ ($AS_2O_3$ group). After pellet implantation, we measured the number of new vessels, vessel length and clock hour of neovascularization, and area of neovascularization was determined using a mathematical formula. New vessels growing began at day 3, number of vessels in $AS_2O_3$ group were significantly more less than those in control group (p<0.05). The length of vessels of $AS_2O_3$ group was significantly shorter than that of control group after day 3(p<0.05). The clock hours of all group were slowly increased at all days but $AS_2O_3$ group was inhibited more than control group. Neovascularization areas of $AS_2O_3$ group were more significantly inhibited than those of control group (p<0.05). This study showed that $AS_2O_3$ had powerful antiangiogenetic effects and it would be useful in the choice of anticancer drug.

  • PDF

Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation

  • Lee, Ji Eun;Park, Jong Il;Myung, Cheol Hwan;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.268-276
    • /
    • 2017
  • Background: UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. Methods: We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. Results: When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. Conclusion: In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.

뇌동맥류에서 혈관형성 인자와 혈관벽 기질 단백에 대한 면역조직화학적 연구 (Immunohistochemical Study for the Angiogenesis Factors and Vascular Wall Matrix Proteins in Intracranial Aneurysms)

  • 김재홍;임만빈;이창영;김상표
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권12호
    • /
    • pp.1584-1591
    • /
    • 2000
  • Objective : Until now, it has been little known about the biological mechanisms associated with the genesis, growth, and rupture of intracranial aneurysm. This study was performed to investigate and understand a part of these mechanisms. Materials and Methods : Immunohistochemical stains for angiogenesis growth factors(basic fibroblast growth factor (bFGF) and vascular endothelial growth factor(VEGF)) and selected vascular wall matrix proteins(alpha smooth muscle actin(${\alpha}SMA$) and collagen Type IV) were performed in fixed sections from a normal circle of Willis artery which was taken from the autopsy specimen as a control vessel and 17 aneurysmal wall specimens which was taken during surgical clipping of aneurysms. The staining intensity and distribution of immunoreactivity to angiogenesis growth factors and selected wall matrix proteins in control vessel and aneurysmal wall were examined and compared with each other. The difference of staining intensity according to the size of aneurysm was also investigated. Results : There was no immunoreactivity to bFGF and VEGF in the control vessel. bFGF immunoreactivity was exhibited in 15 of 17 aneurysm specimens around smooth muscle cells within the media of aneurysm. VEGF immunoreactivity was also exhibited in all aneurysm specimens in patches or diffusely affecting all layers of the aneurysmal wall. The degrees of intensity of bFGF and VEGF immunoexpression were proportionate roughly to the size of aneurysm. Strong immunoexpression of both factors were noticed in large aneurysm. A regularly arranged and defined band of immunoreactivity of ${\alpha}SMA$ was noticed in the media of the control vessel, whereas diffuse, faint, irregularly arranged ${\alpha}SMA$ was noticed in the aneurysmal wall. A regularly defined band of collagen Type IV immunoreactivity was also noticed in the subendothelium of the control vessel, whereas diffuse disorganized immunoreactivity of collagen Type IV was noticed in the entire wall of the aneurysm. Conclusion : These results indicate substantial evidences of abnormal expression of angiogenesis factors and changes of selected vascular wall matrix proteins in the wall of intracranial aneurysm. The unbalanced changes of angiogenesis factors and vascular wall matrix proteins in the wall of aneurysm may be one of the biological mechanisms for the growth and rupture of aneurysm.

  • PDF

Transforming Growth Factor-${\alpha}$ Increases the Yield of Functional Dopaminergic Neurons from in vitro Differentiated Human Embryonic Stem Cells Induced by Basic Fibroblast Growth Factor

  • Lee, Keum-Sil;Shin, Hyun-Ah;Cho, Hwang-Yoon;Kim, Eun-Young;Lee, Young-Jae;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng;Park, Se-Pill;Lim, Jin-Ho
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2003년도 제3회 발생공학 국제심포지움 및 학술대회
    • /
    • pp.102-102
    • /
    • 2003
  • PDF

Expression of Recombinant Epidermal Growth Factor in E. coli

  • Chang Shin Yoon;Eun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.86-89
    • /
    • 1997
  • Epidermal growth factor(EGF) known as a urgastrone is a powerful mitogen with a wide variety of possibilities for medical usages. A mature EGF coding region was isolated from human prepro-EGF sequence by a conventional PCR and cloned into pQE vector in which the gene product was supposed to be expressed with 6$\times$His tag for the subsequent purification. The recombinant mature EGF was expressed in M15[Rep4], an Escherichia coli host strain, in amount of 30-40% of total proteins pressent in E. coli extract by the addition of isopropylthio-$\beta$-galactopyranoside (IPTG). The recombinant EGF purified using a Ni2+-NTA affinity colume chromatography was active in its ability to induce phosphorylation on tyrosine residues of several substrate proteins when murine NH3T3 and human MRC-5 fibroblast cells were stimulated with it. This work may provide the basic technology and information for the production of recombinant EGF.

  • PDF

Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung;Hong, Yong-Kil;Park, Hyo-Eun;Hong, Sung-Hee;Joe, Young-Ae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.591-597
    • /
    • 2003
  • Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.

종양의 성장 및 전이에 있어서 NF-κB의 역할 (Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis)

  • 고현미;최정화;나명석;임선영
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

신경성장촉진 인자가 인간 배아줄기세포 유래 도파민 분비 신경세포형성에 미치는 영향 (Effects of Neurotrophic Factors on the Generation of Functional Dopamine Secretory Neurons Derived from in vitro Differentiated Human Embryonic Stem Cells)

  • 이금실;김은영;신현아;조황윤;왕규창;김용식;이훈택;정길생;이원돈;박세필;임진호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권1호
    • /
    • pp.19-27
    • /
    • 2004
  • Objective: This study was to examine the in vitro neural cell differentiation patterns of human embryonic stem (hES) cells following treatment of various neurotrophic factors [basic fibroblast growth factor (bFGF), retinoic acid (RA), brain derived neurotrophic factor (BDNF) and transforming growth factor (TGF)-$\alpha$], particulary in dopaminergic neuron formation. Methods: The hES cells were induced to differentiate by bFGF and RA. Group I) In bFGF induction method, embryoid bodies (EBs, for 4 days) derived from hES were plated onto gelatin dish, selected for 8 days in ITSFn medium and expanded at the presence of bFGF (10 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14 and 21 days. Group II) For RA induction, EBs were exposed of RA ($10^{-6}M$) for 4 days and allowed to differentiate in N2 medium for 7, 14 and 21 days. Group III) To examine the effects of additional neurotrophic factors, bFGF or RA induced cells were exposed to either BDNF (10 ng/ml) or TGF-$\alpha$ (10 ng/ml) during the 21 days of final differentiation. Neuron differentiation and dopamine secretion were examined by indirect immunocytochemistry and HPLC, respectively. Results: The bFGF or RA treated hES cells were resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with BDNF or TGF-$\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression of a dopaminergic neuron marker, compared to control (p<0.05). In contrast, no effect was observed on the rate of mature neuron (NF-200) or glutamic acid decarboxylase-positive neurons. Immunocytochemistry and HPLC analyses revealed the higher levels of TH expression (20.3%) and dopamine secretion (265.5 $\pm$ 62.8 pmol/mg) in bFGF and TGF-sequentially treated hES cells than those in $\alpha$ RA or BDNF treated hES cells. Conclusion: These results indicate that the generation of dopamine secretory neurons from in vitro differentiated hES cells can be improved by TGF-$\alpha$ addition in the bFGF induction protocol.