• Title/Summary/Keyword: Basement structure

Search Result 210, Processing Time 0.045 seconds

Precambrian Geology and Structure of the Central Region of South Korea

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.231-239
    • /
    • 1972
  • The central region of South Korea is composed of Precambrian formations and Jurassic Daebo granites and is divided tectonically into three provinces, that is, the Ok chon geosynclinal zone in the middle, the Kyonggi massif on the north and northwest side, and the Ryongnam massif on the south and southeast side. The general trend of the Okchon geosynclinal zone and the distribution of Daebo granites is northeast, the Sinian direction. The Kyonggi massif is composed of Precambrian Y onchon system, Sangwon system, gneisses, and Daebo granites, and the Ryongnam massif also Precambrian Ryongnam and Yulri systems, gneisses, and Daebo granites. Precambrian formations in both areas are of flysch type sediments and may be roughly correlated with each other. These formations except Sangwon and Yulri systems are thought to be early to middle Precambrian age and have acted as basement for the Okchon geosyncline where late Precambrian Okchon system was deposited. The Okchon geosynclinal zone is divided into paleogeosynclinal zone to southwestern parts where the Okchon system is distributed, and neogeosynclinal zone to northeastern parts where nonmetamorphosed Paleozoic sediments are dominantly cropped out. Both zones are separated by upthrust created by Daebo orogeny of Jurassic period, which continues southwesterly to bind the Okchon geosynclinal zone and the Ryongnam massif at southwestern parts bisecting Korea peninsula diagonally. Three periods of structural development are recognized in the area. Folds and faults of preTriassic age prevail in the Kyonggi massif. Many isoclinal folds and thrusts originated by Jurassic Daebo orogeny are aligned in the Okchon paleogeosynclinal zone paralleling to the geosynclinal axis so that same formation appears repeatedly in narrow strips, whereas fold axis in neogeosynclinal zone trerid west-northwesterly which might be of Triassic in age and modified by later Daebo orogeny. Discontinuity of geology and structure of Okchon geosynclinal zone is attributed to shifting of the geosyncline through geologic time.

  • PDF

3D Seismic Data Interpretation of the Gorse II Area, Block VI-1, Offshore Southeast Korea (한국 대륙붕 VI-1광구 고래 II지역의 3D탄성파 자료해석)

  • Shin Kook Sun;Yu Kang Min;Kim Kun Deuk;Um Chang Lyeol
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.27-35
    • /
    • 1997
  • The Gorae II area is located in the southwestern margin of the Ulleung Basin, East Sea and corresponds to the Ulleung Trough. The survey of 3D seismic data in this area was performed to delineate the structural leads confirmed by the previous 2D seismic data. As a part of 3D interpretation, basement related structural movements and their relationship with the stratigraphy were studied. The study shows that eight sequences were identified which are genetically related to the tectonics and sediment supply in this area. The geologic structures characterizing the study area consist of : (1) block faults developed in the early stage of basin opening, (2) late Miocene thrusts, and (3) Pliocene wrench faults. The eight sequences consist of pre-rift (acoustic basement), syn-rift (Sequence $A_1, A_2$), post-rift (Sequence $B_1{\~}B_3$), syn-compressional sequence (Sequence C), and post-compressional sequence(Sequence D) from oldest to youngest. The time structure and isochron maps were constructed for each sequence and also used in seismic facies analysis and interpretation of sedimentary environment. The interpretation results reveal that the relative sea level changes caused by several stages of tectonic movements and sediment supply control the stratal and structural geometry of Ulleung basin.

  • PDF

Ultrastructure and Role of Somatic Cells in Macrobrachium nipponense Testis (징거미새우, Macrobrachium nipponense 정소 구성세포의 미세구조와 기능)

  • KIM Dae-Hyun;KANG Jung-Ha;HAN Chang-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.403-407
    • /
    • 2000
  • Ultrastructure and function of testis somatic cells in freshwater prawns Macrobrachium nipponense were studied. The paired testes of the prawn were elongated, united at their anterior end, which lay between the dorsal surface of the hepatopancreas and the heart. Each testis consisted of a large number of seminiferous cords compactly held together by connective tissue. A seminiferous cord was composed of an outer layer of simple squamous epithelium, a basement membrane, the closely packed germ cells and sustentacular cells of the germinal ridge, and an inner layer of simple cuboidal epithelial cells. Leydig cell-like cells in an angular areas filling the space of the seminiferous cords were observed. The nuclei of leydig cell-like cells were characterized by a distinct nucleolus. The simple squamous epithelial layer was composed of flattened cells tying on a basement membrane. The nuclei of the flattened cells were often overlapped in a layer, and the cytoplasm of the cells was observed just near the nuclei. The sustentacular cells were complex in morphology. These cells had relatively small cell bodies from which long cytoplasmic extensions ramified reached the space of germ cells in the germinal ridge. The nuclei of sustentacular cells usually exhibited angular profiles and located most commonly at the periphery of the cords. Cells of simple cuboidal epithelium located between germinal ridge and lumen of seminiferous cord, and part of the cells were adjacent to basal lamina, The cuboidal epithelial cells contained numerous mitochondria, the well-developed rER, the well-developed Golgi complex, and irregularly shaped nuclei. Transition vesicles appeared on the cis side of the Golgi complex. The large vesicles on the trans side of the complex appeared to fuse to form a membrane-bound structure. A number of pits on the cell apex suggested exocytotic activity for secretion of the sperm supporting matrix.

  • PDF

Interpretation of Sedimentary Structure and Depositional Environment Based on a High-Resolution Seismic Profile across the Northeastern Boundary of the Pungam Basin (고해상도 탄성파자료를 이용한 풍암분지 북동부의 퇴적구조 및 퇴적환경 연구)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.

  • PDF

Analysis of the Cause of Waterleakage in Residential Apartment Underground Parking Ground and the Review of the Repare Methods (공동주택 지하주차장의 누수원인 분석 및 보수방안 검토)

  • Oh, Sang-Keun;Choi, Sung-Min;Song, Je-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.255-264
    • /
    • 2014
  • This study analyzes the cause and the repairing method of water leak by parts of basement parking lot which is recorded to have a high defect frequency in apartment buildings. It has been assessed that the cause of water leakage on the first floor upper substrate is due to such factors as landscaping and weights. During construction or through other cases, it has been determined that cracks were produced in the apartment structure because the structure was weak and exposed to the effects of the substrate movement. The base floor and underground external walls are areas that are exposed to water pressure (uplife pressure), thus in normal cases the rear surface repair of the structure using sythetic rubberized polymer gel should be considered as an effective method. However, in cases where application of waterproofing layer is required in the structure due to high water pressure, using asystolic cement milk grout to form the waterproofing layer and applying water-swelling acrylic material into the cracked areas is considered to be highly effective.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Hydrogeologic Structure derived from Electrical and CSMT Surveys in the Chojung Area (전기 및 CSMT 탐사를 이용한 초정지역의 수리지질 구조 해석)

  • Song Sung-Ho;Yong Hwan-Ho;Kim Jin-Ho;Song Seung-Yup;Chung Hyung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2002
  • The hydrogeologic structure in the Chojung area was evaluated from a set of geological and geophysical investigations: detailed geological survey, vertical electric sounding (VES), borehole logging, and controlled-source magnetotelluric (CSMT) survey. Among these, CSMT soundings were taken for integrated interpretation to extend hydrogeologic structure with depth. The result of CSMT survey along with VES and borehole logging provides the vertical geologic boundary connected with hydrogeologic structure, and also indicates the depth of aquifer in granite basement. To interpret the geologic boundary and aquifer characteristics using CSMT data, we adopted the technique of 1-D inversion with smoothness-constrained method and 2-D continuous profiling with 1-D Bostick inversion and spatial filtering. The methodology tested and adopted in this study would be useful and required for providing a more information to the structure of fractured aquifer system.

Crustal Structure of the Continental Margin of Korea in the East Sea: Results From Deep Seismic Sounding (한반도의 동해 대륙주변부의 지각구조 : 심부 탄성파탐사결과)

  • Kim Han-Joon;Cho Hyun-Moo;Jou Hyeong-Tae;Hong Jong-Kuk;Yoo Hai-Soo;Baag Chang-Eop
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.40-52
    • /
    • 2003
  • Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic reflection and ocean bottom seismometer data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting In response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.

A Case Study of Blast Demolition at Chung-Ang Department Store in Daejeon City (대전 중앙데파트 발파해체 사례)

  • Min, Hyung-Dong;Park, Jong-Ho;Song, Young-Suk;Park, Hoon
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.62-78
    • /
    • 2009
  • Recently, construction techniques have been rapidly developed with reconstruction of old buildings, urban regeneration and efforts of restoring natural ecology, so demolition of deteriorated buildings has been rapidly increasing. Demolition work of building should be executed without damaging surrounding environments according to relevant regulations. There are various demolition methods and among them, explosives demolition is the most practical way for expenses and safety of work. As a part of Daejeon stream ecological restoration project, this thesis is a case of executing demolition of Chung-Ang Department Store which was built 35 years ago as covered structure on the upper part of Daejeon stream with explosives demolition. This structure is 8 stories high, total height of 41.6 m including basement floor, $1,650m^2$ for building area and $18,351m^2$ for total floor area. It is located in the center of Daejeon city where shopping centers and buildings are crowded and main facilities are Daejeon subway (18m), backside shopping center (20m), underground shopping center(15m), Mokchuk bridge, Eunjung bridge(0.25m) and fiber-optic cable(0.25m). In this project, implosion was selected for explosives demolition methods by considering this area being a busy urban area, and this project was executed after examining collapse movement of structure in advance using simulation program not to damage main facilities. Total 80kg of explosives and 1,000 detonators were being used. This project will be a good case of executing explosives demolition successfully by applying implosion on urban area in the country.

Application of Seismic Tomography to the Inverstigation of Underground Structure in Gupo Train Accident Area (구포 기차 전복사고 지역의 지반상태 파악을 위한 탄성파 토모그래피 응용)

  • 김중열;장현삼;김유성;현혜자;김기석
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1995
  • A train overturn accident occurred on March 1993 in the Gupo area, northern part of Pusan, unfortunately had taken a heavy toll of lives and caused a great loss of property as well. The reasons for the subsidence of the basement under the railroads, which presumed to be the main cause of the accident, have been investigated from many different angles, including conventional geotechnical investigation methods. The deduced nuin reasons of the subsidence were: 1. blasting for tunnel excavation (NATM) at about 39 meter under the railroads, and 2. unexpected change of bedrock conditions along the direction of tunnel. But this accident was derived nrranlv from the lack of geological and geotechnical information under railroad area because it was impossible to drill beneath the railroads. This paper introduces a new geophysical survey techniqueseisrnic geotomography, and shows some results of the method applying to investigate the underground structure of the accident area. This method not only overcomes the unfavourable environment which many conventional investigation methods cannot face, but produces an image of underground structure with high resolution. Furthermore, the outputs from geotomogaphic analysis could provide very valuable in-situ basic parameters (like seismic velocities, elastic moduli, etc.) which is essential to the design and construction.

  • PDF