• Title/Summary/Keyword: Baseline Detection

Search Result 253, Processing Time 0.023 seconds

Analysis of Heterocyclic Amines in Human Urine Using Multiple Solid-Phase Extraction by Liquid Chromatography/Mass Spectrometry

  • Cha, Hyun-Jeong;Kim, Nam-Hee;Jeong, Eun-Kyung;Na, Yun-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2322-2328
    • /
    • 2010
  • A multiple solid-phase extraction (SPE) method was used with liquid chromatography, coupled with mass spectrometry (LC/MS), for the analysis of heterocyclic amines (HCAs) in human urine. Separation efficiencies based on the pH of the mobile phase and the types of columns were compared. An amide column showed better baseline separation and narrower HCA peak widths at pH 5.0 for the mobile phase than a $C_8$ column. Each SPE step, HLB, MCX, and HybridSPE, was optimized by controlling the pH conditions. The combined method with the three SPEs effectively removed interfering species that cause ion-suppression during HCA detection. Validation of the method, performed with SIM and SRM detection, showed correlation coefficients above 0.991 in the range 0.3 - 16.7 ng/mL. Recovery rates were 45.4 - 97.3% on the $C_8$ column and 71.8 - 101.4% on the amide column, and method detection limits were 0.11 - 0.65 ng/mL on the $C_8$ column and 0.12 - 0.48 ng/mL on the amide column. This method using multiple SPEs offers significant benefits for high-throughput determination of HCAs in urine.

A FRF-based algorithm for damage detection using experimentally collected data

  • Garcia-Palencia, Antonio;Santini-Bell, Erin;Gul, Mustafa;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.399-418
    • /
    • 2015
  • Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

Monitoring moisture content of timber structures using PZT-enabled sensing and machine learning

  • Chen, Lin;Xiong, Haibei;He, Yufeng;Li, Xiuquan;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.589-598
    • /
    • 2022
  • Timber structures are susceptible to structural damages caused by variations in moisture content (MC), inducing severe durability deterioration and safety issues. Therefore, it is of great significance to detect MC levels in timber structures. Compared to current methods for timber MC detection, which are time-consuming and require bulky equipment deployment, Lead Zirconate Titanate (PZT)-enabled stress wave sensing combined with statistic machine learning classification proposed in this paper show the advantage of the portable device and ease of operation. First, stress wave signals from different MC cases are excited and received by PZT sensors through active sensing. Subsequently, two non-baseline features are extracted from these stress wave signals. Finally, these features are fed to a statistic machine learning classifier (i.e., naïve Bayesian classification) to achieve MC detection of timber structures. Numerical simulations validate the feasibility of PZT-enabled sensing to perceive MC variations. Tests referring to five MC cases are conducted to verify the effectiveness of the proposed method. Results present high accuracy for timber MC detection, showing a great potential to conduct rapid and long-term monitoring of the MC level of timber structures in future field applications.

Automatic pronunciation assessment of English produced by Korean learners using articulatory features (조음자질을 이용한 한국인 학습자의 영어 발화 자동 발음 평가)

  • Ryu, Hyuksu;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.103-113
    • /
    • 2016
  • This paper aims to propose articulatory features as novel predictors for automatic pronunciation assessment of English produced by Korean learners. Based on the distinctive feature theory, where phonemes are represented as a set of articulatory/phonetic properties, we propose articulatory Goodness-Of-Pronunciation(aGOP) features in terms of the corresponding articulatory attributes, such as nasal, sonorant, anterior, etc. An English speech corpus spoken by Korean learners is used in the assessment modeling. In our system, learners' speech is forced aligned and recognized by using the acoustic and pronunciation models derived from the WSJ corpus (native North American speech) and the CMU pronouncing dictionary, respectively. In order to compute aGOP features, articulatory models are trained for the corresponding articulatory attributes. In addition to the proposed features, various features which are divided into four categories such as RATE, SEGMENT, SILENCE, and GOP are applied as a baseline. In order to enhance the assessment modeling performance and investigate the weights of the salient features, relevant features are extracted by using Best Subset Selection(BSS). The results show that the proposed model using aGOP features outperform the baseline. In addition, analysis of relevant features extracted by BSS reveals that the selected aGOP features represent the salient variations of Korean learners of English. The results are expected to be effective for automatic pronunciation error detection, as well.

Mean Sojourn Time of Preclinical Gastric Cancer in Korean Men: A Retrospective Observational Study

  • Bae, Jong-Myon;Shin, Sang Yop;Kim, Eun Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.4
    • /
    • pp.201-205
    • /
    • 2014
  • Objectives: This retrospective cohort study aimed to estimate the mean sojourn time (MST) of preclinical gastric cancer in Korean men. Methods: The subjects consisted of voluntary male screenees aged 40 to 69 years who underwent subsequent screening gastroscopies after testing negative at a baseline screening performed between January 2007 and December 2011. A new case was defined if gastric cancer cells were present in the biopsy specimens obtained from gastroscopy. The follow-up period was calculated as the number of person-years between the date of baseline screening gastroscopy and positive findings at a subsequent screening. The MST was calculated using transition rates of gastric cancer to determine the best screening interval. Results: Of the 171 979 voluntary male screenees, 61 688 (36%) underwent subsequent screening gastroscopies between January 2007 and December 2011. A total of 91 incident cases were found during 19 598 598 person-years of follow-up. The MST of gastric cancer was 2.37 years (95% confidence intervals, 1.92 to 2.96), and those aged 40 to 49 years had a shorter MST than those 50 to 69 years did. Conclusions: These findings support the 2-year interval of screening recommended by the nationwide gastric cancer screening program in Korea. Further studies for the age-specific MST among women are needed.

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Performance Analysis of Low Bit-Rate Image Transmission over Concatenated Code WLL system (연쇄 부호화된 WLL 시스템을 통한 저비트율 영상전송 성능분석)

  • 이병길;조현욱;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1616-1623
    • /
    • 1999
  • This paper describes error resilient coding scheme is added in WLL system and its application for robust low-bit rate still image transmission over power controlled W-CDA system Rayleigh fading channels. The baseline JPEG compressing methods are uses in image coding over wireless channel. The channel uses Reed-Solomon(RS) outer codes concatenated with convolutional inner codes, and truncated type I hybrid ARQ protocol based on the selective repeat strategy and the RS error detection capability. Simulation results are proved for the statistics of the frame-error bursts of the proposed system in comparison with conventional WLL system. it gains the 2 dB of the Eb/No in same BER.

  • PDF

Bioavailability of plant pigment phytochemicals in Angelica keiskei in older adults: A pilot absorption kinetic study

  • Correa, Camila R.;Chen, C.Y. Oliver;Aldini, Giancarlo;Rasmussen, Helen;Ronchi, Carlos F.;Berchieri-Ronchi, Carolina;Cho, Soo-Muk;Blumberg, Jeffrey B.;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.550-557
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Angelica keiskei is a green leafy vegetable rich in plant pigment phytochemicals such as flavonoids and carotenoids. This study examined bioavailability of flavonoids and carotenoids in Angelica keiskei and the alteration of the antioxidant performance in vivo. SUBJECTS AND MATERIALS: Absorption kinetics of phytochemicals in Angelica keiskei were determined in healthy older adults (> 60 y, n = 5) and subjects with metabolic syndrome (n = 5). Subjects consumed 5 g dry Angelica keiskei powder encapsulated in gelatin capsules with a low flavonoid and carotenoid liquid meal. Plasma samples were collected at baseline, 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h. Samples were analyzed for flavonoids and carotenoids using HPLC systems with electrochemical and UV detection, respectively, and for total antioxidant performance by fluorometry. RESULTS: After ingestion of Angelica keiskei increases in plasma quercetin concentrations were observed at 1-3 and 6-8 hr in the healthy group and at all time points in the metabolic syndrome group compared to baseline (P < 0.05). Plasma lutein concentrations were significantly elevated in both the healthy and metabolic syndrome groups at 8 hr (P < 0.05). Significant increases in total antioxidant performance were also observed in both the healthy and the metabolic syndrome groups compared to baseline (P < 0.05). CONCLUSIONS: Findings of this study clearly demonstrate the bioavailability of phytonutrients of Angelica keiskei and their ability to increase antioxidant status in humans.

Application of Concurrent Engineering for Conceptual design of a Future Main Battle Tank (차세대 주력전차의 개념설계를 위한 동시공학의 적용)

  • 김진우;소한균
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.38-60
    • /
    • 1999
  • The main objective of this study is systemization of the technique of ROC quantification and optimization of baseline design by applying CE principle to the acquisition process of a weapon system. QFD and TOA techniques can be employed to a good working example of the conceptual design of a future main battle tank. In this paper, Product Planning Phase, the first phase of four QFD phases, is deployed in terms of eight steps including customer requirements and final product control characteristics. TOA is carried out considering only combat weight. In order to perform combat weight analysis and performance TOA, Preliminary Configuration Synthesis Methodology is used. Preliminary Configuration Synthesis Methodology employs the method of least squares and described linear equations of weight interrelation equation for each component of tank. As a result of QFD based upon the ROC, it was cleared that armor piercing power, main armament, type of ammunition, cruising range, combat weight, armor protection, power loading, threat detection and cost are primary factors influencing design and that combat weight is the most dominant one. The results of TOA based on the combat weight constraint show that 5100 lb reduction was required to satisfy the ROC. The baseline design of a future main battle tank is illustrated with assumption that all phases of QFD are employed to development and production process of subsystems, components, and parts of main battle tank. TOA is applied in iterative process between initial baseline design and ROC. The detailed design of each component is illustrated for a future main battle tank.

  • PDF