• Title/Summary/Keyword: Base-seismic isolation

Search Result 279, Processing Time 0.027 seconds

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

Development of Computer Program for Seismic Response Analysis of Base Isolated Structures (면진 구조물의 지진응답 해석 프로그램 개발)

  • 정정훈;허영철;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.348-355
    • /
    • 2001
  • A computer program named \"NLDA-BIS\", which runs under the MATLAB environment, is developed fur seismic response analysis of base isolated structures. This program can explicitly model the various nonlinear isolation elements such as elastomeric bearings, sliding bearings and general viscous dampers, and so on. Newmark'\`s constant average acceleration method fur calculating the responses in time domain and the iterative pseudo-force method for treating the nonlinear isolation forces are adopted. For capturing the hysteretic behavior of isolation elements, the modified Wen's equations are adopted and solved by the numerical differentiation formula method. To verify the validity of the developed program, the seismic responses of a six-story reinforced concrete base isolated structure are calculated and compared with results obtained by the program \"3D-BASIS\" developed at the State University of New York at Buffalo which is the most widely used code far analyzing isolated structures today.ed structures today.

  • PDF

Seismic analysis and modeling of isolated elevated liquid storage tanks

  • Seleemah, Ayman A.;El-Sharkawy, Mohamed
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the seismic response of elevated broad and slender liquid storage tanks isolated by elastomeric or sliding bearings was investigated. The accuracy of predictions of SAP2000 vs. 3D-BASIS-ME programs was examined. A comparative study of the performance of base isolated tanks when isolation bearings are placed at the top or at the bottom of the supporting tower structure was conducted. It was found that base isolation is quite effective in reducing the earthquake response of elevated liquid storage tanks in which high reductions of base shear and shaft displacement were achieved. Modeling the isolated tanks in SAP2000 was very successful in producing results that are nearly identical to those of program 3D-BASIS-ME. Placing the isolators at the top of the shaft in elevated tanks proved to be much better than placing them at the bottom.

Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems (면진용 교좌장치의 거동 특성과 내진 성능 비교)

  • 한규승;한경봉;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Base isolated RC building - performance evaluation and numerical model updating using recorded earthquake response

  • Nath, Rupam Jyoti;Deb, Sajal Kanti;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.471-487
    • /
    • 2013
  • Performance of a prototype base isolated building located at Indian Institute of Technology, Guwahati (IITG) has been studied here. Two numbers of three storeyed single bay RCC framed prototype buildings were constructed for experimental purpose at IITG, one supported on conventional isolated footings and the other on a seismic isolation system, consisting of lead plug bearings. Force balance accelerometers and a 12 channel strong motion recorder have been used for recording building response during seismic events. Floor responses from these buildings show amplification for the conventional building while 60 to 70% reduction has been observed for the isolated building. Numerical models of both the buildings have been created in SAP2000 Nonlinear. Infill walls have been modeled as compression struts and have been incorporated into the 3D models using Gap elements. System identification of the recorded data has been carried out using Parametric State Space Modeling (N4SID) and the numerical models have been updated accordingly. The study demonstrates the effectiveness of base isolation systems in controlling seismic response of isolated buildings thereby leading to increased levels of seismic protection. The numerical models calibrated by relatively low level of earthquake shaking provides the starting point for modeling the non-linear response of the building when subjected to strong shaking.

A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper (E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답)

  • Hwang, Inho;Ju, Minkwan;Sim, Jongsung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.685-690
    • /
    • 2008
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using hysteretic damper is shown to effectively protect structures against earthquakes. A mechanical model is determined that can effectively portray the behavior of a typical E-shape device. Comparison with experimental results for a hysteretic damper indicates that the model is accurate over a wide range of operating conditions and adequate for analysis. The seismic performance of hysteretic dampers are studied and compared with the conventional systems as a base isolation system. A five-story building is modeled and the seismic performance of the systems subjected to three different earthquake is compared. The results show that the hysteretic damper system can provide superior protection than the other systems for a wide range of ground motions.

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

Development of the vibration control devices and the optimal base-isolation design system for Structures (구조물 진동제어장치 개발 및 최적 면진설계 시스템 개발)

  • Kim, Byung-Hyun;Chung, Jung-Hoon;Moon, Seok-Jun;Huh, Young-Cheol;Chung, Jong-Ahn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.375-380
    • /
    • 2004
  • Seismic Isolation and Shock/vibration Control Laboratory has performed the National Research Laboratory(NRL) project, 'Design and Application of Control Devices against Earthquake/Shock/Vibration'. In this project, the prototypes of the vibration control devices for structural control against earthquake and wind were developed and verified their performances. And also, the computer programs were developed for the seismic response analysis and the optimum design of the base-isolated structures with vibration control devices. This paper introduces the developed vibration control devices and computer programs.

  • PDF