• 제목/요약/키워드: Base metal fracture

검색결과 214건 처리시간 0.024초

국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성 (A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

Al-Si 도금된 보론강 레이저 소스에 따른 레이저 용접부의 미세조직과 기계적 성질에 미치는 핫스탬핑 처리의 영향 (Effect of Hot-stamping on Microstructures and Tensile Properties of Al-Si Coated Boron Steel Welds with Laser Source)

  • 오명환;공종판;권민석;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.96-106
    • /
    • 2013
  • In this study, the effect of laser source($CO_2$ and Nd:YAG) on the microstructure and tensile properties of laser welded Al-Si coated boron steel(1.2mmt) was investigated with before and after hot-stamping. In case of as welds condition, fracture occurred in base metal unrelated to the laser source. It could be explained that tensile strength of fusion zone composed of martensite and bainite is higher than that of base metal that contains a lot of ferrite despite dilution of Al and Si from coating layer to fusion zone. In case of hot-stamping condition, the fracture occurred in fusion zone irrelevant to laser source and the tensile strength was lower than hot stamped base metal. In the $CO_2$ laser welds, $Fe_3$(Al,Si) formed near the bond line was transformed into ferrite during hot-stamping. Therefore tensile strength of bond line is lower than that of base metal and center of fusion zone and the fracture occurred in the bond line. On the other hand, in the Nd:YAG laser welds, the higher concentration of Al formed the ferrite in the fusion zone during hot-stamping treatment. Also, the thickness of centerline was thinner than that of base metal. Therefore, it is considered that fracture occurred in centerline of fusion zone due to effect of concentration stress, and it leaded to a lower tensile strength and elongation.

저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰 (Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime)

  • 김선진;랜도 디와;김우곤;김응선
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.565-571
    • /
    • 2016
  • 본 논문은 Alloy 617 모재와 용접재에 대한 저사이클 피로 시험 후의 파괴 시험편에 대한 거시적 및 미시적 파면해석을 나타낸다. 용접재 시험편은 Alloy 617의 가스텅그스텐아크 용접 패드로부터 채취, 제작하였다. 본 연구의 목적은 Alloy 617의 모재와 용접재 시험편의 저사이클 파괴 모드 및 기구의 거시적 및 미시적 양상을 고찰하는 것이다. 전변형률 제어 피로시험이 상온에서 0.6, 0.9, 1.2 및 1.5%에 대하여 수행되었다. Alloy 617 모재의 거시적 파면은 피로하중 축에 수직인 평평한 형태의 양상을 보였으나, 용접재 시험편의 경우는 상대적으로 전단/별모양의 양상의 파괴를 나타내었다. 두 시험편 모두 피로균열전파 영역에서는 명확한 스트라이에이션이 관찰되었다. 한편, 모재의 피로균열은 피로 하중 축에 수직인 방향으로 결정입내를 따라 전파하였으나, 용접재 시험편의 경우 하중 축에 거의 $45^{\circ}$의 경사진 형태의 결정입내로 나타났다.

TMCP 고장력강 용접부의 피로파양 특성에 관한 연구 (A study on the fatigue fracture characteristics of TMCP high tensile strength steel welds)

  • 김영식;노재충;한명수;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.47-54
    • /
    • 1988
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics of this steel. In this paper, the fatigue fracture behaviour of the TMCP steel in base metal and weldment were inspected through the Dynamic Implant test method. Those results were quantitavely compared with those of the ordinary normalized steel of same strength level. Moreover, the effect of the diffusible hydrogen included in the welded part on the fatigue fracture behaviour were made clear. As the experimental results, the fatigue fracture characteristics of the TMCP steel in case of base metal proved out to be superior to that of the normalized steel. However, the TMCP steel weldment including the diffusible hydrogen appeared to have inferior fatigue characteristics compared with the same conditioned normalized steel weldment.

  • PDF

TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성 (High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding)

  • 윤한기;이상필;김사웅
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.

무치악 환자에서 총의치 금속상에 대한 고찰 (Metal base of complete denture in edentulous patient)

  • 구철인;이흥태;박찬익
    • 구강회복응용과학지
    • /
    • 제18권3호
    • /
    • pp.197-204
    • /
    • 2002
  • Polymers are the dominant material for fabrication of denture bases. However, resin base can't fufill the patients' satisfactions completely and solve the pronunciation problem and prevent the denture fracture. In spite of many advantages, metal denture bases do not widespread in clinical practice. The main reasons are the difficulties in fabrication and additional time and cost, inability to rebase such prostheses. The use of the metal base can be one of options in complete denture treatments. This study helps, through reveiwing previous reports and literature about the metal base, metal base to be useful in the clinical application by recommend the materials, indications and advantage/disadvantage of the metal base and introduce variable designs. The clinical application of the metal base have many advantages, but the dentists have to select cases carefully and apply designs according to patient's various conditions. In conclusion, the use of the metal base can't alternate treatment of inadequate conventional complete denture. Adequate complete denture is very important for the treatment of the metal base complete denture.

금전착이 치과용 합금과 전장 레진간의 접착 강도에 미치는 영향 (EFFECT OF GOLD ELECTRODEPOSIT ON THE BOND STRENGTH BETWEEN ALLOYS AND VENEERED RESIN)

  • 양홍서;박영준
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.103-117
    • /
    • 1997
  • The purpose of this experiment was to determind whether the gold electrodeposit on Pd-Ag and Ni-Cr alloys influences on the shear bond strength between veneering resin and silicoated metal surface. All the metal specimens were sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating and resin veneering. According to the metal surfaces to be veneered, experimental groups were divided into five. Group Prec : Gold alloy without gold coating Group Semi : Pd-Ag alloy without gold coating Group Base : Ni-Cr alloy without gold coating Group Semi-G : Pd-Ag alloy with gold coating Group Base-G : Ni-Cr alloy with gold coating All specimens were thermocycled 1,000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of gold electrodeposit on the shear bond strength between resin and metal interface were measured and fractured surface of the resin veneered metal was examined under the scaning electron microscope. The following results were obtained 1. The shear bond strength between resin and metal was $64.51{\pm}11.11Kg/cm^2$ in Prec group, $62.77{\pm}11.23Kg/cm^2$ in Base group and $58.97{\pm}9.20Kg/cm^2$ in Semi Group. There was no significant difference among the groups. 2. The bond strength in groups Semi-G and Base-G decreased about 17%, compared to the nongold-electrodeposit groups(Semi, Base). 3. In groups of non electrodeposit(Prec, Semi, Base), fracture occurred at the interface between alloy and resin, while fracture interface was observed between gold coating and resin in group Semi-G, and between metal substrate and gold coating in group Base-G respectively.

  • PDF

Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향 (Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel)

  • 조위업;공종판;안영남;김철희;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.

Al-Si계 필러메탈을 이용한 A1050알루미늄의 브레이징 접합조건에 관한 연구 (A Study on the Brazing Bondinf Conditions of A1050 Using Al-Si Alloy Filler Metal)

  • 김정일;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.66-72
    • /
    • 1993
  • The brazing of Al to Al using Al-Si alloy filler metal was performed under different bonding conditions such as ratio of lap length to plate thickness, surface roughness and joint clearance of the lap joint. The adopted thickness of the base metal in this experiments were two kinds of 4mm and 7mm which were most commonly used in various field. Influence of several bonding conditions of Al/Al joint was quantitavely evaluated by bonding strength test, and microstructural analysis at the interlayer were performed by optical microscope. From above experiments, the optimum bonding conditions of the brazing bonding of Al/Al using Al-Si alloy filler metal was determined. The major results obtained are as follows. 1) The fracture occurs at brazed joint in the conditions of that the ratio of lap length to plate thickness is less than 2 in case of 7mm plate thickness. 2) The ratio of lap length to plate thickness which the fracture occurs at base metal is decreased with the decreasing of the plate thickness. 3) The joint strength is not affected by the surface roughness and joint clearance of the brazed part. 4) The heat-treatment of the brazed joint contribute to eliminate the boundary between the base metal and filler metal. However, the joint strength is not affected by the heat-treatment.

  • PDF

미세립강 잠호 용접부의 COD에 미치는 시편 크기의 영향 (Efforts of Specimen Sizes on Crack Opening Displacement (COD) for Submerged Arc Weldments of Fine Grained Steel)

  • 윤중근;김대훈;김문일
    • Journal of Welding and Joining
    • /
    • 제1권2호
    • /
    • pp.53-60
    • /
    • 1983
  • COD test based on fracture mechanics concept was used in this study to evaluate the fracture toughness quantitatively. Effects of specimen sizes on critical COD value for ABS EH 36 steel and its submerged arc weldments, and the variation of critical COD value depending on metallurgical/mechanical heterogeneities caused by weld thermal cycles were investigated. Experiment was performed by using specimens made from base metal and submerged arc weldments according to BS 5762. Obtained results are summarized as follows; 1) Critical COD value for base metal decreases with increasing thickness of specimen. On hand, as the reduction ratio of critical COD decreases with increasing specimen thickness, critical COD value becomes constant above a thickness of specimen. 2) Critical COD value for weldment decreases with increasing thickness of specimen and was also affected by metallurgical states of base metal. 3) Size effects for weldment was greater at the hardened region. 4) Critical COD value was affected by microstructural change due to weld thermal cycles in weldments; that is, accicular ferrite formation is favorable for increasing of COD value.

  • PDF