• Title/Summary/Keyword: Base input acceleration

Search Result 29, Processing Time 0.023 seconds

Earthquake-resistance Analysis of Piles Using Dynamic Winkler Foundation Model (동적 Winkler 보 모델을 이용한 말뚝의 내진해석)

  • 장재후;유지형;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.39-49
    • /
    • 2002
  • This paper describes a numerical method for pile foundation subjected to earthquake loading using dynamic Winkler foundation model. To verify the numerical method, shaking table tests were carried out. In shaking table tests, accelerations and pile bending moments were measured for single pile and pile groups with a spacing-to-diameter ratio of 2.5 under fixed input base acceleration. In numerical analysis, the input base and free field accelerations measured from shaking table tests were used as input base motions. Based on the results obtained, free field acceleration was magnified relative to input base acceleration, whereas pile head accelerations reduced relatively to free field acceleration for soil-pile interaction. Measured and predicted bending moments for both cases have maximum value within the distance 10cm(4d) from the pile top. However, there are some differences between the results of numerical analysis and shake table test below 10cm(4d) from the pile top.

Study on the Effective Stiffness of Base Isolation System for Reducing Acceleration and Displacement Responses

  • Kim, Young-Sang
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.586-594
    • /
    • 1999
  • To limit both the large displacement and acceleration response of the structure efficiently, the relationships between acceleration and displacement responses of the structure under several earthquakes are investigated for various horizontal stiffness of the base isolation system to determine the effective stiffness of the base isolation system in this paper. An example structure is a five-storey steel frame building as the primary structure and the secondary structures are assumed to be located on the fifth floor of the primary structure. Input motions used in the structural analysis are El Centre 1940, Taft 1952, Mexico 1985, San Fernando 1971 Pacoima Dam, and artificially generated earthquakes. The relationships of the absolute peak acceleration and the displacement at the top of the structure are calculated for various natural periods of base isolators under various earthquakes. The peak acceleration response of the fifth floor in the base isolated structure is significantly reduced by a factor of 2.1 through 6.25. Also, the relative displacement response of the floor to the base of the superstructure is very small. The results of this study can be utilized to determine the effective stiffness of the base isolation system.

  • PDF

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Uncertain-parameter sensitivity of earthquake input energy to base-isolated structure

  • Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.347-362
    • /
    • 2005
  • The input energy to a base-isolated (BI) building during an earthquake is considered and formulated in the frequency domain. The frequency-domain approach for input energy computation has some notable advantages over the conventional time-domain approach. Sensitivities of the input energy to the BI building are derived with respect to uncertain parameters in the base-isolation system. It is demonstrated that the input energy can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum of acceleration) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for deriving the sensitivities of the input energy to the BI building with respect to uncertain parameters. The sensitivity expressions provide us with information on the most unfavorable combination of the uncertain parameters which leads to the maximum energy input.

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing (적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;배상달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

Effectiveness of Isolation-System on Reduction of Seismic Response of Primary and Secondary Structures (주구조물 및 부구조물에 대한 감진장치의 지진응답 감소 효율성)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.9-21
    • /
    • 1992
  • The effectiveness of the isolation system installed at the base of the primary structure and at the support of the substructure mounted on the primary structure is evaluated for reducing of structural responses under different earthquakes in this paper. The structural responses are analyzed to identify its behavior due to the input motion characteristics such as various peak acceleration and frequency content. Three analytical models are used to evaluate the effectiveness of the isolation system in this study as follows: fixed-base primary structure with support-fixed substructure, base-isolated primary structure with support-fixed substructure, and fixed-base primary structure with support-isolated substruciure. A computer code (KBISAP) is used for numerical integration of equation of motion considering the interaction between the primary structure and the secondary structure. The matrix condensation technique and constant average acceleration method are utilized in this program. And also, the effective stiffness of the base-isolator on reducing the structural response are evaluated for various earthquakes through the relationship of the acceleration - displacement.

  • PDF

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing (납-고무베어링을 적용한 제어장비의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF