• Title/Summary/Keyword: Base curvature

Search Result 82, Processing Time 0.023 seconds

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

A Study on The Construction of 3-Dimensional Edge Blend Surface Modeling (곡면 모델링에서 3차원 경계 곡면 블렌드 구성에 관한 연구)

  • 이창억
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 1994
  • It is very difficult to partially describe the hull shape made up of 3-dimensional free form surface. With computerizing skill in ship design, the geometric modeling technique has been developed. In hull shape modeling, the blending technique has not yet been adapted to the hull shape surface has a variable curvature. By adapting the blend surface, small surface on drawing plane is to be softly blended with given hull surface and a projecting part. This study has adapted to the ship design one of the blending methods by which offsets data of the blend surface can be obtained by the input of blend radius on two base surfaces.

  • PDF

The Selection on the Optimal Condition of Si-wafer final Polishing by Combined Taguchi Method and Respond Surface Method (실험계획법을 적용한 웨이퍼 폴리싱의 최적 조건 선정에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Hun;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The final polishing process is based on slurry, pad, conditioner, equipment. Therefore, the concept of wafer final polishing is also necessary for repeatability of results between polished wafers. In this study, the machining conditions have a pressure, table speed, machining time and slurry ratio. This research investigated the surface characteristics that apply variable machining conditions and response surface methodology was used to obtain more flexible and optimumal condition base on Taguchi method. On the base of estimated response surface curvature from the equation and results of Taguchi method, combined design of experiment was considered to lead to optimumal condition. Finally, polished wafer was obtained mirror like surface.

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Correction and Positioning of Remote Sensing Image Base on Orbit Parameter

  • Cheng, Chunquan;Zhang, Jixian;Yan, Qin;Wang, Yali
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1212-1214
    • /
    • 2003
  • The usual technique of correction and positioning of film image of RS require enough control points to provide the geographic coordinate. Some distortion and error caused by earth curvature and terrain and photograph tilt can't be eliminated by these ways. In this paper a set of technique of systemic correction and positioning of remote sensing image base on orbit parameter is described, some questions in its realization and their solvent also included.

  • PDF

Effects of Base Curve on Fitting with the current Soft Contact Lenses (베이스 커브에 의한 콘택트렌즈 피팅 효과)

  • Choe, Oh Mok;Gang, Myoung Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • The study investigated the effects of base curve radius art the fit of thin, mid-water contact lenses. It was found that central corneal curvature(as measured with the keratometer) was not predictive of the best fitting base curve. Proper lens fit may be the single most important factor that ultimately determines the success of contact lens wear. Comfort, vision, and physiological response are all dependent on the fit of the lens. The percent of optimal fits was highest with the 8.4 mm base curve lens for all three ranges of keratometry values. When fit with the 8.4 mm lens. For most eyes, fitting a flatter lens led to greater decentration, decreased comfort, and no increase in lens movement. The 8.4 mm lens was found to provide on "optimal" fit in over 60% of eyes tested and a fit of "good" or "better" in nearly 90% of eyes tested. Comparisons of different manufactures' lens found that similiar lenses do not always fit in the same way due to subtle design and production differences. Therefore, different products may require different base curve radii to fit the same patient. This is even true when water content, center thickness, and diameter are approximately the same. A praditioner fitting a new patient in this lenses should begin with the 8.4 mm base curve radius.

  • PDF

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

Fitting of Soft Contact Lenses (소프트 콘택트 렌즈의 피팅)

  • Lee, Eun-Hee;Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.173-180
    • /
    • 2000
  • To determine the effect of base curve and diameter of soft contact lenses on the fitting under the various corneal curvature, the model eyes which was made of either stainless steel or ordinary wood, were used as the substitutes for human eyes. The evaluations of fit of the soft contact lenses on both wood model eyes and human eyes were found to be very similar to each other. All the contact lenses except very thin ones became flat after fit on the stainless steel model eyes because the model eye could not preserve enough moisture to hold the edge of contact lenses on the steel ball's surface. The relationships between the base curves of contact lenses and radii of cornea for the optimum (normal) fit were measured as follows : corneal curvature (C.C)<7.6 mm : base curve(B.C) 8.4 mm, C.C 7.6~7.8 mm : B.C 8.4~8.5 mm. C.C 7.8~8.1 mm : B.C 8.6 mm. It is concluded that larger base curve is required for the eyes which have abnormal bulge on its cornea. It is found that very thin soft contact lenses can be easily twisted or folded regardless of moisture content when they were fit on the relatively dry eyes(corneas).

  • PDF

MARGINAL FITNESS OF PORCELAIN-FUSED-TO-METAL CROWN ACCORDING TO MATERIAL AND TECHNIQUE

  • Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.120-132
    • /
    • 1998
  • This stusy was to investigate the marginal fitness of porcelain-fused-to- metal crown after succesive firing cycle. Main variables were the degree of marginal curvature of labiocervical margin and the type of alloy. The exaggerated marginal curvature(EMC) was created by additional reduction at the faciocervical wall of the normallized marginal curvature (NMC)-typed ivorine tooth by using milling machine. The difference in the shape was the mid facial margin was placed 2mm apical to cemento- enamel junction in labial surface. Three types of alloy were high noble, noble, and base metal alloy. Test specimens were divided into 8 groups and each group had 8 specimens. Sixty four ceramometal crowns were made totally. Measurement stages were following degassing, opaquing. body porcelain firing, and glazing, and measuring sites were 4. (midmesial, midfacial, middistal, and midlingual). Digital, travelling measuring microscope (0.5 um precision, Olympus. Japan) was used under ${\times}250$ magnification. Within the limitation of this investigation, it was concluded as belows: 1. The pattern of marginal distortion was varied. Degassing stage was not a specific, causative stage that induce most of total marginal distortion during whole procedure fabricating a ceramometal crown. Body firing stage induced discrepancy relatively more than other firing stages. 2. The specimens that were Ni-based alloy and had EMC were distorted persistently following successive fabricating procedures. But marginal openings were decreased after glazing. 3. The release of metal grinding-induced stress was presumed as a cause that induce marginal distortion. 4. The amount of discrepancies of the labial and lingual margins were greater than that of the mesial and distal margin in the specimen that had EMC. 5. Silver-plated die was not enough to resist abrasion during repeated seating of metal copings on the die-holding device.

  • PDF

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF