• Title/Summary/Keyword: Base Station Control

Search Result 320, Processing Time 0.025 seconds

Seamless Mobility of Heterogeneous Networks Based on Markov Decision Process

  • Preethi, G.A.;Chandrasekar, C.
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.616-629
    • /
    • 2015
  • A mobile terminal will expect a number of handoffs within its call duration. In the event of a mobile call, when a mobile node moves from one cell to another, it should connect to another access point within its range. In case there is a lack of support of its own network, it must changeover to another base station. In the event of moving on to another network, quality of service parameters need to be considered. In our study we have used the Markov decision process approach for a seamless handoff as it gives the optimum results for selecting a network when compared to other multiple attribute decision making processes. We have used the network cost function for selecting the network for handoff and the connection reward function, which is based on the values of the quality of service parameters. We have also examined the constant bit rate and transmission control protocol packet delivery ratio. We used the policy iteration algorithm for determining the optimal policy. Our enhanced handoff algorithm outperforms other previous multiple attribute decision making methods.

Device to Device Communications Architectures and Cross-Layer Evaluation Frameworks

  • Aldabbagh, Ghadah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.152-161
    • /
    • 2021
  • The paper focuses on Device-to-device (D2D) Architectures evaluation frameworks. D2D communication and discovery can improve spectrum usage efficiency and optimize the tradeoffs between throughput and energy consumption. The target operation modes involve both indirect communication between two nodes via a base station or the direct communication among proximal nodes, enabling use cases that can support communications out of cellular coverage, as well as low end-end delay requirements. The paper will present the architectural evolution of D2D networks within 3GPP standardization and will highlight key network functionalities and signaling protocols. It will also identify key analytical and simulation models that can be used to assess the performance and energy efficiency of resource allocation strategies, and it will present a suitable cross-layer integrated framework.

Auto-Configuration Downlink Transmission Power Approach For Femtocell Base Station

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2022
  • Femtocells are being incorporated into heterogeneous networks in order to increase the network capacity. However, intensive deployment of femtocells results in undesired interference, which lowers the system's performance. Controlling the femtocell transmission power is one of of the aspects that can be addressed in order to mitigate the negative effects of the interference. It may also be utilized to facilitate the auto-configuration of the network's conductance, if necessary. This paper proposes the use of an auto-configuration technique for transmission power. The suggested technique is based on the transmission power of macrocells and the coverage provided by femtocells. The simulation findings show that the network's capacity has increased, and the amount of interference has decreased.

Key Challenges of Mobility Management and Handover Process In 5G HetNets

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.139-146
    • /
    • 2022
  • Wireless access technologies are emerging to enable high data rates for mobile users and novel applications that encompass both human and machine-type interactions. An essential approach to meet the rising demands on network capacity and offer high coverage for wireless users on upcoming fifth generation (5G) networks is heterogeneous networks (HetNets), which are generated by combining the installation of macro cells with a large number of densely distributed small cells Deployment in 5G architecture has several issues because to the rising complexity of network topology in 5G HetNets with many distinct base station types. Aside from the numerous benefits that dense small cell deployment delivers, it also introduces key mobility management issues such as frequent handover (HO), failures, delays and pingpong HO. This article investigates 5G HetNet mobility management in terms of radio resource control. This article also discusses the key challenges for 5G mobility management.

Performance Analysis of Hybrid Downlink Call Admission Control Algorithm for Supporting Wireless Multimedia Services (무선 멀티 미디어 서비스를 위한 하이브리드 호 접속 제어 알고리듬의 제안 및 평가)

  • Kim, Jeong-Ho;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1031-1038
    • /
    • 2004
  • The call admission control algorithm of hybrid scheme is proposed to enhance the QoS(quality of service) of attempted multimedia calls. In the initial stage of 3rd generation multimedia services networks, the major limitations include the small sefyice coverage and the limited radio link capacity. Because the initial massive deployment of network elements such as base stations, base station controllers, and mobile switching centers is restricted to populated areas and the other areas should be covered with the fewer network elements, the radio channel resources are hmited and coverage network is supposed to be established. Therefore the QoS of multimedia services is expected to be severely degraded when tentative traffic hot spot occurs frequently. Thus, the blocking probability of attempted calls mcreases when relatively large number of users try to place multimedia calls in a hot spot area of the wireless networks. In this situation, the proposed hybrid scheme can mitigate the degradation of the QoS of multimedia services by using the available radio channels of the neighboring cells.

Performance Analysis of a Cell - Cluster - Based Call Control Procedure for Wireless ATM Networks (셀집단화 방식에 근거한 무선 ATM 호제어절차의 성능분석)

  • Cho, Young-Jong;Kim, Sung-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1804-1820
    • /
    • 1997
  • In this paper, an efficient call control procedure is presented for next generation wireless ATM networks and its performance is mathematically analyzed using the open queueing network. This procedure is based on a new scheme called as the cell clustering. When we use the cell clustering scheme, at the time that a mobile connection is admitted to the network, a virtual cell is constructed by choosing a group of neighboring base stations to which the call may probabilistically hand over and by assigning to the call a collection of virtual paths between the base stations. Within a microcell/picocell environment, it is seen that the cell clustering can support effectively a very high rate of handovers, provides very high system capacity, and guarantees a high degree of frequency reuse over the same geographical region without requiring the intervention of the network call control processor each time a handover occurs. But since mobiles, once admitted, are free to roam within the virtual cell, overload condition occurs in which the number of calls to be handled by one base station to exceed that cell site's capacity of radio channel. When an overload condition happens, the quality of service is abruptly degraded. We refer to this as the overload state and in order to quantify the degree of degradation we define two metrics, the probability of overload and the normalized average time spent in the overload state. By using the open network queueing model, we derive closed form expressions for the maximum number of calls that can be admitted into the virtual cell such that the two defined metrics are used as the acceptance criteria for call admission control.

  • PDF

A Study on Algorithm of the Integrated Communication System in Radio Station (무선국의 통합 시스템에 대한 알고리즘의 연구)

  • 조학현;최조천;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.545-551
    • /
    • 1998
  • The Radio communication by existing SSB, VHF, etc. in a coast station and a base station for military affairs is still used to a very important the device of information delivery or transmitting and receiving by the remote controller to using to the exclusive cable for a equipment established at a long distance. When a number of consumer to connected and operated by a number of transceiver is essential for a circuit controller of ICS, in KOREA, is devoted by import to considerable quantity because of to be delayed development of this field. This Paper has been realized to optimal algorithm and designing of a circuit connection controller by multi-processor to pre-stage for the development of ICS. The H/W is composed able to remote control to circuit connector with the several slave processor and a processor for master, and this has taken possible through without any obstacle to communication circuits of a control signal by FSK system. The S/W make possible monitoring for communication condition of other circuits by means of a serial communication system by the multi-processing. This paper has been studied for connecting to a circuits wished to rapidly and precisely by the full application to a interrupt technique. A technique to control by remote to a number of transceiver is a way increasing to application for a frequency resource of the limited MF/SF, VHF and the existing radio communication technique. According to, this paper will achieve to be the reduction of energy & equipment and multiplicity of information delivery in the general communication and disposal to rapid and exact for the important communication as distress, urgency and safety on the sea.

  • PDF

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network

  • Palanisamy, Padmaloshani;Sivaraj, Nirmala
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.318-329
    • /
    • 2018
  • Femtocell (FC) technology envisaged as a cost-effective approach to attain better indoor coverage of mobile voice and data service. Deployment of FCs over macrocell forms a heterogeneous network. In urban areas, the key factor limits the successful deployment of FCs is inter-cell interference (ICI), which severely affects the performance of victim users. Autonomous FC transmission power setting is one straightforward way for coordinating ICI in the downlink. Application of intelligent control using soft computing techniques has not yet explored well for wireless networks. In this work, autonomous FC transmission power setting strategy using Adaptive Neuro Fuzzy Inference System is proposed. The main advantage of the proposed method is zero signaling overhead, reduced computational complexity and bare minimum delay in performing power setting of FC base station because only the periodic channel measurement reports fed back by the user equipment are needed. System level simulation results validate the effectiveness of the proposed method by providing much better throughput, even under high interference activation scenario and cell edge users can be prevented from going outage.

Dynamic Packet Transmission Probability Control Scheme in CDMA S_ALOHA Systems (CDMA S_ALOHA 시스템에서 동적 패킷 전송 확률 제어 기법)

  • 임인택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.485-492
    • /
    • 2003
  • This paper proposes a transmission probability control scheme for guaranteeing fair packet transmissions in CDMA slotted ALOHA system. In CDMA slotted ALOHA system, the packets transmitted in the same slot act as multiple access interference, so that unsuccessful packet transmissions are caused entirely by multiple access interference. Therefore, in order to maximize the system throughput, the number of simultaneously transmitted packets should be kept at a proper level. In the proposed scheme, the base station calculates the packet transmission probability of mobile stations in the next slot according to the offered load and then broadcasts this probability to all the mobile stations. Mobile stations, which have a packet to transmit, attempt to transmit packet with the received probability. Simulation results show that the proposed scheme can offer better system throughput and average delay than the conventional scheme, and guarantee a good fairness among all mobile stations regardless of the offered load.