• Title/Summary/Keyword: Base Plate

Search Result 615, Processing Time 0.025 seconds

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

A study on the Base Plate to reduce vibration for Refrigerator (Base Plate 연구를 통한 냉장고 진동 저감 방안 고찰)

  • Kim, Jung-Seon;Thuy, Tran Ho Vinh;Kook, Jung-Hwan;Wang, Se-Myung;Lee, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • In this paper, we present our method to reduce vibration of the base plate of a refrigerator by avoiding resonance between base plate and compressor operation. To verify the modes of the base plate, FE models of the base plate with free-free condition and applied boundary condition were built and validated by results from experimental modal analysis. Operating Deflection Shape analysis was applied to find the sensitive area on the base plate during compressor operation. In optimization process, Finite Difference Method - based sensitivity analysis is used to detect the most sensitive area. Finally, based on this numerical result, we will make beads on the base plate to reduce vibration of refrigerator.

  • PDF

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

A Study on Punching Shear of Column-Foundation Joint Connection for Reinforced Steel Base Plate (Base Plate로 보강된 기둥-기초 접합부의 뚫림전단강도 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, the RC column-based joint connection part carry out loading test by reinforced hollow or extended Base Plate in order to confirm that RC joint punching shear reinforcement effect of applying the Base Plate. Base Plate thickness, extension length, size, and type as the variable, Base Plate suitable for the stress distribution and shape and dimensions confirmed through experiment and then reinforcing effect was analyzed. Experimentally, vertical load transmitted to the Base Plate from column to foundation is effective to stress distribution and then, type of hollow reinforcement more efficient than a closed. Through experiment, improve performance and ductility due to reinforcement and relative to the thickness of the existing foundation reduced even showed better performance than the existing. The behavior of the reinforced specimens be able to induce from brittle to ductile. Experiment on loading to destroy performed the pattern of cracks, destruction aspect before and after reinforcement.

Mold Structure using 3plate type mold base for Recycling (재활용 몰드베이스를 이용한 3매 구성 사출금형구조)

  • 정영득;박태원;권윤숙;송준엽;제덕근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.92-96
    • /
    • 1997
  • Recently, the life cycle of products is rapidly shortened and then the disposal of the used mold applied in development of the product is a difficult thing. In this study, we proposed the feasibility of new 3plate type mold base for recycling by analyzing of the existing standard mold base. And in order to apply new 3plate mold base in mold design and making, we constructed the specifications for parts such as runner stripper plate, cavity plate, core plate and slide core unit. Also, we confirmed the possibility of recycling mold base by testing a used 3plate mold for a Audio front pannel.

  • PDF

A STUDY ON THE BONDING STRENGTH OF RESILIENT DENTURE LINERS (탄성 의치상 이장재의 접착력에 관한 연구)

  • Lee Sang-Hoon;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.411-436
    • /
    • 1992
  • The purpose of this study was to assess the adhesion of resilient denture liners (such as, heat-cured silicone molloplast B,cold- cured silicone Mollosil) to polymethyl metacrylate (K-33) and metal (Megalloy) in the laboratory by peel test. The resilient denture lines were processed according to manufactures instruction, onto prepared specimens(original resin base plate, rough resin base plate, stippled metal plate, mesh metal plate ) 75mm long and 25m wide. And then, the peel test was performed by instron. The results were as follows : 1. The bonding strength of Mollosil was stronger than that of Molloplast B except the specimen of stippled metal plate. 2. The tensile strength of Mollosil was weaker than that of Molloplast Bas tearing of Mollosil was occured in the peel test. 3. Mesh metal plate had the highest bonding strength in the case of Molloplast B and Mollosil. But stippled metal plate have high bonding strength in the case of Molloplast B and have the lowest bonding strength in the case of Mollosil. 4. The bonding strength of rough resin base plate was stronger than that of original resin base plate in the case of Molloplast B and Mollosil. 5. The bonding strength of metal plates was stronger than that of resin base plates in the case of Molloplast B and Mollosil except the case of bonding strength between the stippled metal plate and Mollosil. 6. It seems that the Increase of surface and retention form of metal plate and resin base plate produces higher physical bonding strength.

  • PDF

Image Noise Reduction Using Structural Mode Shaping for Scanning Electron Microscopy

  • Hamochi, Mitsuru;Wakui, Shinji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • In a scanning electron microscope (SEM), outside acoustic noise causes image noise that distorts observations of the specimen being examined. A SEM that is less sensitive to acoustic noise is highly desirable. This paper investigates the image noise problem by addressing the mode shapes of the base plate and the transmission path of the acoustic noise and vibration. By arranging the position of the rib, a new SEM base plate was developed that had twisting as the 1st and 2nd modes. In those two twisting modes, vibration nodes existed near the center of the base plate where the specimen chamber is placed. Less vibration was transmitted to the chamber and to the specimen by the twisting modes compared to bending ones, which are the 2nd and 3rd modes for a rectangular plain base plate. An SEM with the developed base plate installed exhibited a significant reduction of image noise when exposed to acoustic noises below 250 Hz.

A Study on the Characteristic of Floating Base Plate due to Plate Shape (팽이기초의 형상에 따른 특성 분석)

  • Lee, Song;Jeong, Dae-Yeol;Jung, Hyo-Kwon;Lee, Moo-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2008
  • A soft ground improvement method is used for structures which are constructed on soft ground to decrease settlement and Increase bearing capacity. The Floating Base Plate has been developed for such purposes. In this study, the load-settlement characteristics were investigated by numerical analysis on various Floating Base Plate shapes to select an optimum shape, different from the conventional shape. The selected optimum shape was used to perform plate bearing test and numerical simulations. It was found that the Floating Base Plate is very effective In reducing the settlement and increasing the bearing capacity.

2.5 Inch HDD Spindle Vibration with Flexible Base Plate

  • Heo, Bae-Kho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.210-214
    • /
    • 2005
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, Because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF

2.5 Inch HDD Spindle Vibration with a Flexible Base Plate

  • Heo, Baek-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF