• Title/Summary/Keyword: Base Interval Approach

Search Result 14, Processing Time 0.022 seconds

A Study on the Scheduling of Planned Maintenance for Multicomponent System with Hidden Failures : Focusing on Inspection Cost (다품목 시스템의 Hidden Failure를 고려한 계획정비 스케줄링에 관한 연구 : 검사비용을 중심으로)

  • Kim, Mansoo;Hyun, Do Kyung;Kim, Sung Hwan;Ji, Woong Ki;Kwon, Ki-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.149-158
    • /
    • 2019
  • The scheduling of planned maintenance problem of a system consisting of a number of components was studied. The purpose of maintenance scheduling is to minimize the cost of maintaining long-term operations. On the system side, the cost of a system shutdown can be minimized by grouping and inspecting a number of components. In addition, proper inspection cycles can be selected for each component to identify the failure sufficiently early to minimize the cost of the failure. To reduce the complexity of the calculations, the 'base interval approach' used in previous studies was applied and, in addition, the inspection cost savings from simultaneous inspections of multiple components were considered. To compare the effectiveness of inspection cost savings, this paper presents the results of simulation analysis performed by referring to the cases in the existing studies.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base (항공교통관제규칙과 비행장의 최적규모에 관한 연구)

  • Lee Ki-Hyun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

Optimum signal setting based on phase sequence and interval in an isolated intersection (교통신호의 페이스순서 및 페이스간격을 고려한 신호최적화)

  • 김경철;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.45-58
    • /
    • 1996
  • In a large signal intersection, it is the most important to set phase sequences and phase intervals of traffic signal in order to improve the efficiency of the capacity as well as safety. These setting allows to select the best sequence of signal phase among several alternatives, and thus to rearrange the starting and ending points of the individual phase using an effective interphase periods (EIP). The EIP is a gap between previous and current traffic movements at a potential collision point in an intersection. Each of traffic movements has an equality for safety and efficiency at the balanced condition of EIP. This paper presents how to set optimally the phase sequences and intervals of traffic signal in an intersection using phase based approach. And in the second part, we applied the theory developed in the first part. In particular, a numerical example of phase base signal setting is presented using a matrix computation method in order to select the best sequence among several alternatives, and thus to rearrange the starting and ending points of the individual phase using the EIP. This method also allows to apply to optimum signal setting even in five-lag or staggered-type intersection.

  • PDF

Three-Dimensional Evaluation of Skeletal Stability following Surgery-First Orthognathic Approach: Validation of a Simple and Effective Method

  • Nabil M. Mansour;Mohamed E. Abdelshaheed;Ahmed H. El-Sabbagh;Ahmed M. Bahaa El-Din;Young Chul Kim;Jong-Woo Choi
    • Archives of Plastic Surgery
    • /
    • v.50 no.3
    • /
    • pp.254-263
    • /
    • 2023
  • Background The three-dimensional (3D) evaluation of skeletal stability after orthognathic surgery is a time-consuming and complex procedure. The complexity increases further when evaluating the surgery-first orthognathic approach (SFOA). Herein, we propose and validate a simple time-saving method of 3D analysis using a single software, demonstrating high accuracy and repeatability. Methods This retrospective cohort study included 12 patients with skeletal class 3 malocclusion who underwent bimaxillary surgery without any presurgical orthodontics. Computed tomography (CT)/cone-beam CT images of each patient were obtained at three different time points (preoperation [T0], immediately postoperation [T1], and 1 year after surgery [T2]) and reconstructed into 3D images. After automatic surface-based alignment of the three models based on the anterior cranial base, five easily located anatomical landmarks were defined to each model. A set of angular and linear measurements were automatically calculated and used to define the amount of movement (T1-T0) and the amount of relapse (T2-T1). To evaluate the reproducibility, two independent observers processed all the cases, One of them repeated the steps after 2 weeks to assess intraobserver variability. Intraclass correlation coefficients (ICCs) were calculated at a 95% confidence interval. Time required for evaluating each case was recorded. Results Both the intra- and interobserver variability showed high ICC values (more than 0.95) with low measurement variations (mean linear variations: 0.18 mm; mean angular variations: 0.25 degree). Time needed for the evaluation process ranged from 3 to 5 minutes. Conclusion This approach is time-saving, semiautomatic, and easy to learn and can be used to effectively evaluate stability after SFOA.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

The Significance of the Strong Ion Gap in Predicting Acute Kidney Injury and In-hospital Mortality in Critically Ill Patients with Acute Poisoning (중증 급성 중독 환자에서 급성 신장 손상과 병원 내 사망률을 예측하기 위한 강이온차(Strong Ion Gap)의 중요성)

  • Sim, Tae Jin;Cho, Jae Wan;Lee, Mi Jin;Jung, Haewon;Park, Jungbae;Seo, Kang Suk
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.2
    • /
    • pp.72-82
    • /
    • 2021
  • Purpose: A high anion gap (AG) is known to be a significant risk factor for serious acid-base imbalances and death in acute poisoning cases. The strong ion difference (SID), or strong ion gap (SIG), has recently been used to predict in-hospital mortality or acute kidney injury (AKI) in patients with systemic inflammatory response syndrome. This study presents a comprehensive acid-base analysis in order to identify the predictive value of the SIG for disease severity in severe poisoning. Methods: A cross-sectional observational study was conducted on acute poisoning patients treated in the emergency intensive care unit (ICU) between December 2015 and November 2020. Initial serum electrolytes, base deficit (BD), AG, SIG, and laboratory parameters were concurrently measured upon hospital arrival and were subsequently used along with Stewart's approach to acid-base analysis to predict AKI development and in-hospital death. The area under the receiver operating characteristic curve (AUC) and logistic regression analysis were used as statistical tests. Results: Overall, 343 patients who were treated in the intensive care unit were enrolled. The initial levels of lactate, AG, and BD were significantly higher in the AKI group (n=62). Both effective SID [SIDe] (20.3 vs. 26.4 mEq/L, p<0.001) and SIG (20.2 vs. 16.5 mEq/L, p<0.001) were significantly higher in the AKI group; however, the AUC of serum SIDe was 0.842 (95% confidence interval [CI]=0.799-0.879). Serum SIDe had a higher predictive capacity for AKI than initial creatinine (AUC=0.796, 95% CI=0.749-0.837), BD (AUC=0.761, 95% CI=0.712-0.805), and AG (AUC=0.660, 95% CI=0.607-0.711). Multivariate logistic regression analyses revealed that diabetes, lactic acidosis, high SIG, and low SIDe were significant risk factors for in-hospital mortality. Conclusion: Initial SIDe and SIG were identified as useful predictors of AKI and in-hospital mortality in intoxicated patients who were critically ill. Further research is necessary to evaluate the physiological nature of the toxicant or unmeasured anions in such patients.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

On the Analysis of Physical Distribution System in Mokpo Port (목포항 물류시스템의 분석에 관한 연구)

  • Lee, C. Y.;Nam, M. U.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • Rapid change in the technological environment of marine transportation and the development of the ocean shipping industry have fostered a revolution in the port system. This in turn has caused major changes in the function and use of port in Korea. Aside from this, Mokpo Port, however continues to decline, because the existing port facilities and related subsystem are already obsolete with no chance of regaining operational effectiveness and treatment for proper implementation. Although a few studies have been done on the Mokpo Port, has not been found, any reseach for the analytical approach to the transportation system of it. This paper aims to make an extensive analysis of the physical distribution system in Mokpo Port focusing on the coordination of subsystems such as navigational aids system. The base of introduced simulation tool here is the queueing theory. The overall findings are as follows: 1. Among those vessels called at Mokpo Port in 1994, 556 ships(2,736,669 G/T) are oceangoing while 8155 ships(2,587,217 G/T) are domestic. The average size of oceangoing vessels is 4,922,1 G/T, and the domestic is 317,8 G/T. The average arrival interval and service time of the domestic vessels are 6.0 hours and 24.1 hours respectively marking the berth occupation rate over 100%. Those for oceangoing vessels are 34.5 hours, 120.0 hours and 37.2%. In order to maintainin the berth occupation rate to 70% the capacity considering the 1994 of domestic piers must be extended to 145% and oceangoing vessels must be increased to 165%. 2. The capacity of approaching channel is enough to handle the total traffic volume of 3. Tugs are sufficiently being provided to handle all ships requiring their services 4. The capacity of storage and inland transportation systems are sufficient to handle the throughput and the yard stroage utilization rate of No.1 - No.5 is 4.5% and No.6 is 30% of 1993's. 5. The utilization rate of LLC(Level Looping Crane) and PNT(PNeumaTic) are 2.7% and 18.8%, respectively.

  • PDF